

3-Fazowy Inwerter Hybrydowy Instrukcja Obsługi SH5.0RT / SH6.0RT / SH8.0RT / SH10RT

Wszelkie prawa zastrzeżone

Wszelkie prawa zastrzeżone

Żadna część tego dokumentu nie może być powielana w jakiejkolwiek formie ani jakimikolwiek środkami bez uprzedniego pisemnego zezwolenia Sungrow Power Supply Co., Ltd (dalej "SUNGROW").

Znaki towarowe

SUNGROW oraz inne znaki handlowe Sungrow użyte w niniejszej instrukcji są własnością Sungrow Power Supply Co, Ltd.

Wszystkie inne znaki towarowe lub zarejestrowane znaki towarowe wspomniane wniniejszym dokumencie stanowią własność odpowiednich właścicieli.

Licencje na oprogramowanie

- Niedozwolone jest wykorzystywanie danych zawartych w oprogramowaniu firmowym lub opracowanym przez SUNGROW, czy to w części czy też w całości, do cel ó w handlowych.
- Niedozwolone jest dokonywanie odtwarzania kodu źródłowego, łamania ani wszelkich innych operacji pogarszających pierwotną konstrukcję programu w oprogramowaniu opracowanym przez SUNGROW.

Sungrow Power Supply Co., Ltd. Adres: No. 1699 Xiyou Rd., New & High Tech Zone, Hefei, 230088, Chiny. Tel: +86 551 6532 7834 Strona internetowa: www.sungrowpower.com

Instrukcja obsługi – informacje

Niniejsza instrukcja zawiera przede wszystkim informacje na temat produktu oraz wytyczne dotyczące jego montażu, obsługi i konserwacji. Instrukcja może nie zawierać kompletnych informacji na temat instalacji fotowoltaicznej (PV). Dodatkowe informacje o innych urządzeniach czytelnik może uzyskać ze strony **www.sungrowpower.com** lub ze stron internetowych odpowiednich producent ó w.

Zastosowanie

Niniejsza instrukcja dotyczy następujących rodzaj ó w falownik ó w:

- SH5.0RT
- SH6.0RT
- SH8.0RT
- SH10RT

O ile nie określono inaczej, będą one nazywane w niniejszym dokumencie "falownikiem".

Grupa docelowa

Niniejsza instrukcja jest przeznaczona dla:

- wykwalifikowanych os ó b odpowiedzialnych za montaż i rozruch falownika,
- właścicieli falownika, któ rzy mają z nim styczność.

Korzystanie z niniejszej instrukcji

Przed przystąpieniem do jakichkolwiek prac przy falowniku należy przeczytać niniejszą instrukcję oraz wszelkie inne powiązane dokumenty. Dokumenty należy przechowywać w miejscu bezpiecznym i dostępnym przez cały czas.

Treść może być okresowo aktualizowana lub weryfikowana w związku z rozwojem produktu. Informacje zawarte w niniejszej instrukcji mogą ulec zmianie bez powiadomienia. Najnowszą wersję instrukcji można pobrać ze strony http://support.sungrowpower.com/.

Symbole

Instrukcje dotyczące bezpiecze ń stwa będą oznaczone poniższymi symbolami.

Symbol	Objaśnienie	
	Wskazuje zagrożenie o wysokim poziomie ryzyka, kt ó re, o ile się go	
MILBELPICZENSIWO	nie uniknie, doprowadzi do śmierci lub poważnych obraże ń ciała.	
	Wskazuje zagrożenie o średnim poziomie ryzyka, które, o ile się go	
A OSTRZEŻENIE	nie uniknie, może doprowadzić do śmierci lub poważnych obraże ń	
	ciała.	

Symbol	Objaśnienie	
PRZESTROGA	Wskazuje zagrożenie o niskim poziomie ryzyka, kt ó re, o ile się go nie uniknie, może doprowadzić do niewielkich lub umiarkowanych obraże ń ciała.	
UWAGA	Wskazuje sytuację, kt ó ra, o ile się jej nie uniknie, może doprowadzić do uszkodzenia sprzętu lub mienia.	
0	Wskazuje dodatkowe informacje, podkreśla treści lub wskaz ó wki, kt ó re mogą być pomocne, np. w rozwiązaniu problem ó w lub zaoszczędzeniu czasu.	

Spis treści

W	szelkie prawa zastrzeżoneI
Ins	strukcja obsługi — informacjeII
1	Bezpiecze ń stwo 1
	1.1 Panele fotowoltaiczne 1
	1.2 Sieć elektroenergetyczna 1
	1.3 Falownik
	1.4 Akumulatory
	1.5 Kompetencje wykwalifikowanych os ó b 4
2	Rozwiązanie systemu
	2.1 Wprowadzenie do produktu 5
	2.1.1 Opis oznaczenia typu 5
	2.1.2 Wygląd6
	2.1.3 Wymiary7
	2.1.4 Kontrolka LED7
	2.1.5 Przełącznik DC7
	2.2 System magazynowania energii PV (PV ESS)
	2.3 Układ r ó wnoległy 12
	2.4 Doposażanie istniejącej instalacji PV 14
3	Opis działania 16
	3.1 Funkcja bezpiecze ń stwa 16
	3.1.1 Ochrona 16
	3.1.2 Alarm zwarcia doziemnego16
	3.2 Przekształcanie energii i zarządzanie nią16
	3.2.1 Obniżenie mocy znamionowej16
	3.2.2 DRM ("AU" /"NZ") 17
	3.2.3 Zakres regularnych napięć roboczych18
	3.2.4 Zakres regularnych częstotliwości roboczych 18
	3.2.5 Regulacja mocy biernej18
	3.2.6 Sterowanie odbiornikami18
	3.3 Zarządzanie akumulatorem 19
	3.3.1 Zarządzanie ładowaniem 20

	3.3.2 Zarządzanie rozładowywaniem	22
	3.4 Komunikacja i konfiguracja	22
4	Rozpakowywanie i przechowywanie	23
	4.1 Rozpakowanie i sprawdzenie	23
	4.2 Identyfikacja falownika	23
	4.3 Zakres dostawy	25
	4.4 Przechowywanie falownika	25
5	Montaż mechaniczny	27
	5.1 Bezpiecze ń stwo w trakcie montażu	27
	5.2 Umiejscowienie — wymagania	27
	5.2.1 Wymagania dotyczące środowiska instalacji	27
	5.2.2 Wymagania dotyczące przewoźnika	28
	5.2.3 Wymagania dotyczące kąta ustawienia	28
	5.2.4 Wymogi dotyczące przejrzystości instalacji	28
	5.3 Narzędzia montażowe	29
	5.4 Przesuwanie falownika	30
	5.5 Montaż falownika	31
6	Wykonanie połącze ń elektrycznych	33
	6.1 Instrukcje bezpiecze ń stwa	33
	6.2 Opis przyłączy	34
	6.3 Przegląd połącze ń elektrycznych	36
	6.4 Dodatkowe połączenia uziemienia	39
	6.4.1 Wymagania dla dodatkowego uziemienia	40
	6.4.2 Procedura podłączania	40
	6.5 Podłączanie kabla AC	41
	6.5.1 Wymagania po stronie AC	41
	6.5.2 Montowanie złącza AC	42
	6.5.3 Instalacja złącza AC	44
	6.6 Podłączanie kabla DC	45
	6.6.1 Konfiguracja układ ó w wejściowych PV	46
	6.6.2 Wymagania po stronie DC	47
	6.6.3 Montaż złącza PV	48
	6.6.4 Instalacja złącza PV	49
	6.7 Podłączenie komunikacji	50
	6.7.1 Połączenie Ethernet	50
	6.7.2 Połączenie WiNet-S	53

	6.7.3 Połączenie RS-485	56
	6.8 Podłączanie licznika energii Smart Energy Meter	59
	6.9 Przyłącze akumulatora	59
	6.9.1 Podłączanie kabla zasilającego	60
	6.9.2 Podłączanie kabla CAN	62
	6.9.3 Podłączanie kabla Enable	62
	6.10 Przyłącze DO	62
	6.11 Przyłącze DI	63
	6.11.1 Montowanie złącza COM	65
	6.11.2 Montaż złącza COM	67
	6.12 Przyłącze rezerwy	68
7	Rozruch	69
	7.1 Kontrola przed rozruchem	69
	7.2 Procedura uruchamiania	69
	7.3 Przygotowanie aplikacji	70
	7.4 Tworzenie elektrowni	70
	7.5 Inicjowanie urządzenia	73
	7.6 Konfigurowanie elektrowni	75
8	Aplikacja iSolarCloud App	79
8	Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie	79 79
8	Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie	79 79 79
8	Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie 8.3 Rejestracja konta	79 79 79 79 80
8	Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie 8.3 Rejestracja konta 8.4 Logowanie	79 79 79 80 81
8	Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie 8.3 Rejestracja konta 8.4 Logowanie 8.4.1 Wymagania	79 79 79 80 81 81
8	Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie 8.3 Rejestracja konta 8.4 Logowanie 8.4.1 Wymagania 8.4.2 Procedura logowania.	79 79 79 80 81 81 81 82
8	Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie 8.3 Rejestracja konta 8.4 Logowanie 8.4.1 Wymagania 8.4.2 Procedura logowania 8.5 Ustawienia początkowe	79 79 79 80 81 81 82 83
8	Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie 8.3 Rejestracja konta 8.4 Logowanie 8.4.1 Wymagania 8.4.2 Procedura logowania 8.5 Ustawienia początkowe 8.5.1 Ograniczenie podawania	79 79 80 81 81 82 83 83
8	Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie 8.3 Rejestracja konta 8.4 Logowanie 8.4.1 Wymagania 8.4.2 Procedura logowania 8.5 Ustawienia początkowe 8.5.1 Ograniczenie podawania 8.5.2 Tryb pracy bez połączenia z siecią.	79 79 80 81 81 82 83 83 83
8	Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie 8.3 Rejestracja konta 8.4 Logowanie 8.4.1 Wymagania 8.4.2 Procedura logowania 8.5 Ustawienia początkowe 8.5.1 Ograniczenie podawania 8.5.2 Tryb pracy bez połączenia z siecią 8.5.3 Tryb regulacji mocy biernej	79 79 80 81 81 82 83 83 83 83 83
8	Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie 8.3 Rejestracja konta 8.4 Logowanie 8.4 Logowanie 8.4.1 Wymagania 8.4.2 Procedura logowania. 8.5 Ustawienia początkowe 8.5.1 Ograniczenie podawania 8.5.2 Tryb pracy bez połączenia z siecią 8.5.3 Tryb regulacji mocy biernej 8.6 Przegląd funkcji.	79 79 80 81 81 82 83 83 83 84 84 88
8	Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie 8.3 Rejestracja konta 8.3 Rejestracja konta 8.4 Logowanie 8.4.1 Wymagania 8.4.2 Procedura logowania. 8.5 Ustawienia początkowe 8.5.1 Ograniczenie podawania 8.5.2 Tryb pracy bez połączenia z siecią 8.5.3 Tryb regulacji mocy biernej 8.6 Przegląd funkcji. 8.7 Strona gł ó wna	79 79 80 81 81 82 83 83 83 83 84 84 88 88
8	 Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie 8.3 Rejestracja konta 8.4 Logowanie 8.4.1 Wymagania 8.4.2 Procedura logowania 8.5 Ustawienia początkowe 8.5.1 Ograniczenie podawania 8.5.2 Tryb pracy bez połączenia z siecią 8.5.3 Tryb regulacji mocy biernej 8.6 Przegląd funkcji 8.7 Strona gł ó wna 8.8 Informacja o przebiegu 	79 79 80 81 81 82 83 83 83 83 84 88 88 88 90
8	 Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie 8.3 Rejestracja konta 8.4 Logowanie 8.4.1 Wymagania 8.4.2 Procedura logowania 8.5 Ustawienia początkowe 8.5.1 Ograniczenie podawania 8.5.2 Tryb pracy bez połączenia z siecią 8.5.3 Tryb regulacji mocy biernej 8.6 Przegląd funkcji 8.7 Strona gł ó wna 8.8 Informacja o przebiegu 8.9 Rekordy 	79 79 80 81 81 82 83 83 83 83 84 88 88 88 90 90
8	 Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie 8.3 Rejestracja konta 8.4 Logowanie 8.4.1 Wymagania 8.4.2 Procedura logowania 8.5 Ustawienia początkowe 8.5.1 Ograniczenie podawania 8.5.2 Tryb pracy bez połączenia z siecią 8.5.3 Tryb regulacji mocy biernej 8.6 Przegląd funkcji 8.7 Strona gł ó wna 8.8 Informacja o przebiegu 8.9 Rekordy 8.91 Wykres 	79 79 80 81 81 82 83 83 83 83 83 83 84 88 88 88 90 90 90
8	Aplikacja iSolarCloud App 8.1 Kr ó tkie wprowadzenie 8.2 Pobieranie i instalowanie 8.3 Rejestracja konta 8.4 Logowanie 8.4.1 Wymagania 8.4.2 Procedura logowania 8.5 Ustawienia początkowe 8.5.1 Ograniczenie podawania 8.5.2 Tryb pracy bez połączenia z siecią 8.5.3 Tryb regulacji mocy biernej 8.6 Przegląd funkcji 8.7 Strona gł ó wna 8.8 Informacja o przebiegu 8.9 Rekordy 8.9.1 Wykres 8.9.2 Rekordy alarm ó w	79 79 80 81 82 83 83 83 83 84 88 88 88 90 90 91 91

		,
	8.10.1 Parametry Systemu	;
	8.10.2 Czas Działania	r
	8.10.3 Typowe Parametry	•
	8.10.4 Parametry Pracy Bez Połączenia z Siecią)
	8.10.5 Regulacja Mocy Czynnej95)
	8.10.6 Regulacja Mocy Biernej97	,
	8.10.7 Czas Rozładowania Akumulatora97	,
	8.10.8 Godzina Wymuszonego Ładowania Akumulatora	;
	8.10.9 Regulacja Obciążenia 99)
	8.10.10 Parametry Komunikacji100)
	8.10.11 Aktualizacja Oprogramowania Sprzętowego 101	
	8.10.12 Wykrywanie Uziemienia101	
	8.10.13 Konfiguracja układu r ó wnoległego)
	8.10.14 Sterowanie mocą przy zmianie częstotliwości 102)
9 ۱	Vycofanie instalacji z eksploatacji 104	ŀ
	9.1 Wycofywanie falownika z użytku 104	ŀ
	9.1.1 Odłączanie Falownika104	ļ
	9.1.2 Demontaż Falownika 105)
	9.1.3 Utylizacja falownika 106	j
	9.2 Wycofywanie akumulatora z użytku 106	j
10	Rozwiązywanie problem ó w i konserwacja 107	,
	10.1 Rozwiązywanie Problem ó w 107	,
	10.2 Konserwacja	;
	10.2.1 Konserwacja rutynowa113	;
	10.2.2 Wymiana baterii guzikowej 113	;
11	Załącznik	-
	11.1 Dane techniczne	-
	11.2 Kompatybilność rezerwy w instalacii off-arid)
	11.3 Zapewnianie Jakości	
	11.4 Dane Kontaktowe	,
	· ··· ··· · · · · · · · · · · · · · ·	

1 Bezpiecze ń stwo

Falownik został skonstruowany i przetestowany ściśle według międzynarodowych przepis ó w dotyczących bezpiecze ń stwa. Przed przystąpieniem do jakichkolwiek prac należy przeczytać wszystkie instrukcje dotyczące bezpiecze ń stwa i przestrzegać ich przez cały czas, wykonując prace przy falowniku i za jego pomocą.

Nieprawidłowe obsługiwanie lub wykonywanie prac może doprowadzić do:

- obraże ń ciała lub śmierci operatora, lub osoby postronnej;
- uszkodzenia falownika lub innego mienia.

Wszystkie szczeg ó łowe uwagi i ostrzeżenia dotyczące bezpiecze ń stwa związane zpracą będą wskazane w krytycznych punktach niniejszej instrukcji.

- Zasady bezpiecze ń stwa zawarte w tej instrukcji nie obejmują wszystkich środk ó w ostrożności, jakich należy przestrzegać. Operacje należy wykonywać z uwzględnieniem faktycznych warunk ó w na miejscu.
- SUNGROW nie bierze odpowiedzialności za uszkodzenia spowodowane nieprzestrzeganiem zasad bezpiecze ń stwa zawartych w tej instrukcji.

1.1 Panele fotowoltaiczne

1

Ła ń cuchy PV wystawionych na działanie światła słonecznego będą generowały energię elektryczną, co może prowadzić do śmiertelnych napięć i porażenia prądem.

- Należy zawsze pamiętać, że falownik jest zasilany z dwóch źródeł. Operatorzy muszą nosić odpowiednią odzież ochronną: kask, izolowane obuwie, rękawice itd.
- Przed dotknięciem kabli DC operator musi użyć miernika, aby się upewnić, że kabel nie jest pod napięciem.
- Operator musi stosować się do wszystkich ostrzeżeń na łańcuchach prądowych PV oraz w tej instrukcji.

1.2 Sieć elektroenergetyczna

Muszą być przestrzegane instrukcje ruchu i eksploatacji sieci elektroenergetycznej.

UWAGA

Wszystkie połączenia elektryczne muszą być wykonane zgodnie z normami lokalnymi i krajowymi.

falownik może być podłączony do sieci elektroenergetycznej tylko za zezwoleniem lokalnego zakładu energetycznego.

1.3 Falownik

Zagrożenie porażenia prądem z powodu wysokich napięć

 Nigdy nie wolno otwierać obudowy. Otwarcie bez upoważnienia spowoduje unieważnienie gwarancji, a w większości przypadków także zezwolenia na użytkowanie.

Ryzyko uszkodzenia falownika lub poważnych obrażeń ciała

- Podczas pracy falownika nie podłączać ani nie odłączać złączy modułów fotowoltaicznych akumulatora ani AC.
- Po wyłączeniu falownika i odłączeniu wszystkich urządze ń elektrycznych odczekać co najmniej 10 minut, aby wewnętrzne kondensatory zupełnie się rozładowały.
- Przed podłączeniem lub odłączeniem złączy moduł ó w fotowoltaicznych, akumulatora i AC upewnić się, że nie płynie w nim napięcie ani prąd.

Wszystkie instrukcje bezpiecze ń stwa, etykiety ostrzegawcze i tabliczki znamionowe na falownikze:

- Muszą być dobrze widoczne.
- Nie powinny być usuwane ani zakrywane.

A PRZESTROGA

Ryzyko oparze ń wskutek kontaktu z gorącymi elementami! Podczas pracy nie dotykać żadnych gorących części (takich jak radiator). Jedyną częścią, jaką można bezpiecznie dotykać przez cały czas, jest włącznik DC.

UWAGA

Ustawienia regionalne mogą wprowadzać wyłącznie wykwalifikowane osoby. Dokonywanie zmian bez upoważnienia może spowodować:

• Naruszenie wymog ó w oznakowania typu.

Ryzyko uszkodzenia falownika wskutek wyładowa ń elektrostatycznych (ESD)! Dotykając podzespoł ó w elektronicznych, można uszkodzić falownik. Podczas przenoszenia falownika należy:

- unikać niepotrzebnego dotykania,
- zakładać opaski uziemiające na nadgarstek przed dotknięciem jakiegokolwiek złącza.

Warning Label

Etykieta	Opis
\wedge	Przed serwisowaniem odłączyć falownik od wszystkich zewnętrznych źr ó deł zasilania!
	Przez 10 minut od odłączenia od źr ó deł zasilania nie wolno dotykać części pod napięciem.
	Ryzyko oparzenia z powodu nagrzania powierzchni do temperatury powyżej 60 ° C.
^	Zagrożenie życia z powodu wysokich napięć!
4	Tylko wykwalifikowany personel może otwierać i serwisować falownik.
	Przed serwisowaniem przeczytać instrukcję obsługi!

1.4 Akumulatory

Akumulatory są źr ó dłem elektryczności – ich nieprawidłowa instalacja lub zwarcie może spowodować oparzenia lub pożar.

Na zaciskach akumulatora oraz przewodach łączących go z falownikem obecne są napięcia niebezpieczne dla życia. Dotknięcie przewod ó w lub złączy wewnątrz falownika może spowodować ciężkie obrażenia lub śmierć.

UWAGA

Nieprawidłowe użytkowanie lub konserwacja może spowodować trwałe uszkodzenie akumulatora.

Niewłaściwe parametry falownika doprowadzą do przedwczesnego zużycia akumulatora.

1.5 Kompetencje wykwalifikowanych os ó b

Wszystkie instalacje muszą być wykonywane przez osoby wykwalifikowane, które muszą mieć:

- Przeszkolenie z zakresu montażu i rozruchu instalacji elektrycznej oraz postępowania w sytuacjach zagroże ń
- Znać instrukcję oraz inne dokumenty powiązane
- Znać lokalne przepisy i dyrektywy

2 Rozwiązanie systemu

falownik może współ pracować wyłącznie z łań cuchami PV o klasie ochronności II wg normy IEC 61730, klasa zastosowań A. Uziemianie bieguna dodatniego lub ujemnego łań cuchó w PV lub akumulatora jest zabronione. Może to spowodować uszkodzenie falownika.

Gwarancja nie obejmuje uszkodze ń produktu związanych z usterką lub uszkodzeniem instalacji fotowoltaicznej.

Zabrania się wykorzystywania urządzenia w jakikolwiek inny sposób niż opisany w niniejszym dokumencie.

UWAGA

W sieciach elektroenergetycznych typu TT napięcie doziemne w przewodzie N nie może przekraczać 30 V.

Tr ó jfazowe falowniky hybrydowe mogą być stosowane w instalacjach PV on-grid i offgrid. Za pomocą wbudowanego systemu zarządzania energią (EMS) mogą sterować przepływem energii i optymalizować go pod kątem zwiększenia zużycia na potrzeby własne w instalacji.

2.1 Wprowadzenie do produktu

2.1.1 Opis oznaczenia typu

Oznaczenie typu (na przykład SH10RT) należy interpretować następująco:

Тур	Znamionowa moc wyjściowa	Znamionowe napięcie sieciowe
SH5.0RT	5000 W	_
SH6.0RT	6000 W	3 / N / PE, 230 / 400 V
SH8.0RT	8000W	

Тур	Znamionowa moc wyjściowa	Znamionowe napięcie sieciowe
SH10RT	10000W	

2.1.2 Wygląd

* Przedstawiony rysunek ma charakter wyłącznie poglądowy. Rzeczywisty produkt może się od niego różnić.

Poz.	Nazwa	Opis
1	Panel kontrolki LED	Interfejs HMI sygnalizujący aktualny stan pracy
		falownika.
2	Prze łą cznik DC	Służy do bezpiecznego odłączania obwodu DC.
	Obszar połącze ń elektrycznych	Zawiera zaciski DC, zaciski AC, zaciski akumulatora,
3		zaciski komunikacyjne oraz dodatkowy zacisk
		uziemienia.
4	Hak	Umożliwia zawieszanie falownika na wsporniku do
4		montażu ściennego.

2.1.3 Wymiary

Rys. 2-2 Wymiary falownika (w mm)

2.1.4 Kontrolka LED

Kontrolka LED znajdująca się z przodu falownika może wskazywać bieżący stan roboczy falownika.

Kontrolka LED	Stan kontrolki LED	Definicja
	WŁĄCZONA	falownik pracuje w trybie on/off-grid.
ن ا	Pulsuje	falownik jest w stanie oczekiwania lub rozruchu (bez działania on/off-grid).
	WŁĄCZONA	W systemie wystąpiła usterka.
	WYŁĄCZONA	Zar ó wno strona AC jak i DC są bez zasilania.

Karta. 2-2 Opis kontrolki LED

2.1.5 Przełącznik DC

Włącznik DC służy do bezpiecznego odłączania obwodu prądu stałego.

W przypadku spełnienia wymagań dotyczących wejścia i wyjścia falownik działa automatycznie. Aby zatrzymać falownik w przypadku wystąpienia usterki lub w razie potrzeby, należy ustawić przełącznik DC falownika w pozycji "OFF".

Przed ponownym uruchomieniem falownika ustawić przełącznik DC w pozycji "ON".

2.2 System magazynowania energii PV (PV ESS)

Jeśli moduł akumulatora zostanie połączony bezpośrednio z falownikem, zwykła instalacja PV może zostać podniesiona do rangi systemu magazynowania energii (ESS). System taki jest w stanie funkcjonować poza siecią elektroenergetyczną i stanowić źr ó dło zasilania awaryjnego chronionych odbiornik ó w w przypadku zakł ó ce ń lub awarii w sieci elektroenergetycznej, kt ó re mogą być spowodowane następującymi zdarzeniami:

- utrata połączenia z siecią elektroenergetyczną;
- podnapięcie;
- podczęstotliwość lub nadczęstotliwość.

UWAGA

W żadnej sytuacji, zar ó wno w zastosowaniu z podłączeniem do sieci, jak i offgrid, r ó żnica napięcia między przewodem N i PE nie może przekraczać 30 V, ponieważ w przeciwnym razie falownik przestanie wytwarzać energię. System taki nie nadaje się do zasilania urządze ń medycznych służących do podtrzymania życia. Nie może zagwarantować rezerwowego zasilania we wszystkich okolicznościach.

Rys. 2-3 System magazynowania energii PV (PV ESS)

Opis	Uwaga	
	Kompatybilne z krzemem monokrystalicznym,	
Ła ń cuchy PV	krzemem polikrystalicznym oraz cienką warstwą	
	bez uziemienia.	
falownik	SH5.0RT / SH6.0RT / SH8.0RT / SH10RT	
	Opis Ła ń cuchy PV falownik	

Pozycja	Opis	Uwaga
С	Inteligentny licznik energii Smart Energy Meter w instalacjach tr ó jfazowych	Mierzy ilość eksportowanej energii i komunikuje się z falownikem za pośrednictwem złącza RS- 485.
D	Sieć elektroenergetyczna	Rodzaje układ ó w uziemiających sieci: TT, TN
E	Akumulator (opcja)	Akumulator litowo-jonowy
F	Odbiorniki rezerwy	Chronione odbiorniki domowe podłączone bezpośrednio do falownika.
G	Normalne odbiorniki	Niechronione odbiorniki domowe, stracą zasilanie w przypadku awarii sieci elektroenergetycznej.

Deklaracja dotycząca funkcji zasilania rezerwowego

Następująca deklaracja uwzględnia og ó lne zasady SUNGROW dotyczące falownik ó w hybrydowych opisanych w niniejszym dokumencie.

- 1 W przypadku falownik ó w hybrydowych instalacja elektryczna zawiera zazwyczaj połączenie falownika zar ó wno z modułami PV, jak i akumulatorami. Jeśli w trybie rezerwy nie jest otrzymywana energia z akumulator ó w ani moduł ó w PV, zasilanie rezerwowe jest automatycznie przerywane. SUNGROW nie ponosi żadnej odpowiedzialności za następstwa nieprzestrzegania tej instrukcji.
- 2 Generalnie czas załączania rezerwy wynosi mniej niż 20 ms. Jednak pewne czynniki systemy zewnętrzne mogą spowodować, że systemy nie będą działały poprawnie w trybie rezerwy. W związku z tym użytkownicy muszą znać warunki i stosować się do następujących zasad:
- Nie podłączać odbiorników, których poprawne funkcjonowanie zależy od stabilnego dopływu energii.
- Nie podłączać odbiorników, których całkowity pobór energii przekracza maksymalną wydajność rezerwy.
- Nie podłączać odbiornik ó w, kt ó re mogą wywołać bardzo wysokie skoki prądu w momencie rozruchu, jak klimatyzator bez regulacji częstotliwościowej albo odkurzacz, lub odbiornik ó w z prostownikiem jednopoł ó wkowym, jak suszarka do włos ó w, opalarka, wiertarka udarowa. Patrz "11.2 Kompatybilność rezerwy w instalacji off-grid"w sprawie zalecanych odbiornik ó w.
- Ze względu na stan samego akumulatora jego prąd może być osłabiony pod działaniem pewnych czynników zewnętrznych, jak np. temperatura i czynniki meteorologiczne.

Deklaracja dotycząca zabezpieczenia przeciążeniowego rezerwy

Zadziałanie zabezpieczenia przeciążeniowe powoduje zrestartowanie falownika. Czas wymagany na zrestartowanie jest wydłużany (do maks. 5 min), jeśli zabezpieczenie przeciążeniowe zadziała ponownie. Należy spró bować zmniejszyć pobór mocy przez

odbiorniki rezerwy poniżej wartości maksymalnej lub odłączyć odbiorniki, które mogą wywołać bardzo wysokie skoki prądu w momencie rozruchu.

Zarządzanie energią

Energia do zasilania odbiornik ó w jest czerpana z rozładowywania akumulatora. Jeśli akumulator jest pusty lub moc systemu akumulatorowego jest niewystarczająca, energia jest pobierana z sieci elektroenergetycznej, najpierw do zasilania odbiornik ó w rezerwy, a następnie do zasilania zwykłych odbiornik ó w.

W trakcie działania sieci elektroenergetycznej jest uaktywniana funkcja bypassu falownika hybrydowego i odbiorniki rezerwy są podłączane bezpośrednio do sieci elektroenergetycznej przy użyciu wyłącznika bypassu wbudowanego w falownikze.

Jeśli licznik Smart Energy Meter jest niesprawny lub nie jest zamontowany, falownik będzie działał normalnie, natomiast akumulator można tylko ładować, ale nie można go rozładowywać. W takim przypadku ustawienie mocy podawanej nie będzie stosowane, a funkcja DO trybu optymalizowanego będzie nieaktywna.

Zarządzanie energią w dzie ń

System zarządzania energią (EMS) domyślnie działa w trybie zużycia na własne potrzeby.

- Scenariusz 1. Moc wytwarzana w instalacji PV ≥ zużycie mocy przez odbiorniki
 - Moc z instalacji PV będzie kierowana najpierw do zasilania odbiornik ó w rezerwy, a następnie zwykłych odbiornik ó w i akumulatora.
 - Ponadto, jeśli akumulator jest w pełni naładowany, nadmiar będzie oddawany do sieci elektroenergetycznej. Moc podawana nie będzie przekraczała wartości granicznej podawania określonej w ustawieniach początkowych.
- Scenariusz 2. Moc wytwarzana w instalacji PV < zużycie mocy przez odbiorniki
 - Niedob ó r energii będzie po pierwsze pokrywany z rozładowywania akumulatora.
 - Ponadto falownik będzie czerpał moc z sieci elektroenergetycznej, jeśli suma mocy z instalacji PV i akumulatora będzie mniejsza niż pob ó r mocy odbiornik ó w.

Zarządzanie energią w nocy

W nocy, o ile dostępna jest energia, odbiorniki będą zasilane z rozładowywania akumulatora. Jeśli moc z rozładowywania akumulatora nie będzie wystarczająca, odbiorniki będą zasilane z sieci elektroenergetycznej.

Jeśli akumulator zostanie wyczerpany w nocy, wchodzi w tryb oczekiwania. W takim przypadku całość poboru mocy odbiornik ó w jest pokrywana z sieci elektroenergetycznej.

2.3 Układ równoległy

Maksymalnie pięć falownik ó w hybrydowych jednego typu można połączyć w układzie r ó wnoległym magazynowania energii PV (PV ESS) za pomocą interfejs ó w komunikacyjnych RS485. Układ r ó wnoległy może funkcjonować zar ó wno w trybie ongrid, jak i off-grid.

Rys. 2-4 Układ równoległy magazynowania energii PV

Tylko zacisk GRID falownika może zostać połączony w układzie r ó wnoległym. Zaciski BACK-UP i akumulatora nie mogą być ze sobą łączone. Zacisk BACK-UP należy połączyć z odbiornikami off-grid, a zacisk akumulatora z akumulatorem. Odbiorniki rezerwy podłączone do falownika nie mogą przekraczać jego mocy znamionowej.

Patrz "6.7.3 Połączenie RS-485" w sprawie sposobu podłączenia kabli.

W układzie równoległym on-grid falownik nadrzędny otrzymuje informacje od licznika energii Smart Energy Meter, a falownik podrzędny wykonuje operacje zarządzania energią, w tym m.in. następujące:

- Sterowanie mocą oddawaną
- Ładowanie/rozładowywanie akumulatora
- Limitowanie maksymalnej mocy

Warunkiem funkcjonowania falownika w układzie równoległym są następujące ustawienia.

 Sterowanie mocą oddawaną. Funkcja sterowania mocą oddawaną oznacza "8.5.1 Ograniczenie podawania". Moc instalacji PV falownika nadrzędnego jest całkowitą mocą zainstalowaną instalacji, w falownikach podrzędnych moc oddawana nie musi być ustawiona.

i

- Zdalne sterowanie mocą. Urządzenie zdalnego sterowania mocą musi być podłączone tylko do falownika nadrzędnego, kt ó ry będzie koordynował planowanie. Patrz "6.11 Przyłącze DI" w sprawie sposobu podłączenia kabli. Patrz "8.10.5 Regulacja Mocy Czynnej" w sprawie uaktywnienia go w aplikacji iSolarCloud.
- Konfiguracja układu równoległego. Patrz "8.10.13 Konfiguracja układu równoległego" w sprawie konfigurowania falownika nadrzędnego i falowników podrzędnych w aplikacji iSolarCloud.

2.4 Doposażanie istniejącej instalacji PV

falownik hybrydowy jest kompatybilny z dowolnym tró jfazowym sieciowym falownikem PV. Istniejącą instalację PV można doposażyć w falownik hybrydowy, aby mogła funkcjonować jako system PV ESS.

Wytwarzana moc otrzymywana przez istniejący falownik PV będzie najpierw zużywana na zasilanie odbiorników, a następnie ładowanie akumulatora. Funkcja zarządzania energią falownika hybrydowego spowoduje znaczną poprawę zużycia na potrzeby własne nowej instalacji.

Złącze on-grid do doposażania istniejącej instalacji PV

Rys. 2-5 Złącze on-grid do doposażania istniejącej instalacji PV

Zacisk AC falownika PV i zacisk GRID falownika hybrydowego są podłączone równolegle.

Złącze off-grid do doposażania istniejącej instalacji PV

Rys. 2-6 Złącze off-grid do doposażania istniejącej instalacji PV

Złącze off-grid służy do doposażenia istniejącej instalacji PV w celu jak najlepszego spożytkowania energii PV przez umożliwienie działania falownika PV nawet bez połączenia siecią elektroenergetyczną.

Zacisk AC falownika PV i zacisk BACK-UP falownika hybrydowego są podłączone równolegle.

Moc falownika PV nie może przekroczyć mocy znamionowej falownika hybrydowego (jeśli falownik PV jest jednofazowy, moc falownika PV nie może przekroczyć mocy znamionowej jednej fazy tr ó jfazowego falownika hybrydowego).

Przed doposażeniem istniejącej instalacji PV w złącze off-grid, musi zostać uaktywniony parametr "Sterowanie mocą przy zmianie częstotliwości". Szczeg ó łowe informacje zawiera "8.10.14 Sterowanie mocą przy zmianie częstotliwości".

Uwaga:

- 1 W scenariuszu eksportu zerowego falownik hybrydowy może tylko uniemożliwić eksportowanie mocy do sieci elektroenergetycznej przez siebie, ale nie gwarantuje eksportu zerowego z falownika PV. Informacji o funkcji eksportu zerowego falownika PV może udzielić jego producent.
- 2 W falownikze hybrydowym moduły PV są opcjonalne.

3 Opis działania

3.1 Funkcja bezpiecze ń stwa

3.1.1 Ochrona

falownik posiada pewne wbudowane zabezpieczenia, takie jak zabezpieczenie przeciwzwarciowe, monitorowanie rezystancji izolacji uziemienia, wyłącznik różnicowo-prądowy, zabezpieczenie antywyspowe, ogranicznik przepięć/przetęże ń po stronie DC itp.

3.1.2 Alarm zwarcia doziemnego

W falownikze jest wbudowany wielofunkcyjny styk bezpotencjałowy (przekaźnik DO), kt ó ry może służyć do sygnalizacji zewnętrznej alarmu zwarcia doziemnego. Zewnętrzna sygnalizacja alarmu musi być zasilana z sieci elektroenergetycznej. Wymagany jest wskaźnik świetlny lub brzęczyk jako dodatkowe wyposażenie. Jeśli wystąpi zwarcie doziemne:

- styk bezpotencjałowy DO włączony zostanie automatycznie, aby zasygnalizować alarm zwarcia doziemnego;
- brzęczyk wewnątrz falownika także zacznie wydawać sygnał dźwiękowy;
- alarm może zostać przesłany za pomocą złącza komunikacyjnego Ethernet.

3.2 Przekształcanie energii i zarządzanie nią

falownik przekształca prąd stały z kolektora fotowoltaicznego lub akumulatora w prąd przemienny zgodnie z wymogami sieci elektroenergetycznej. Przekazuje także prąd stały z panelu PV do akumulatora.

Ponieważ we wnętrzu falownika jest wbudowany konwerter dwukierunkowy, może on ładować lub rozładowywać akumulator.

Dwa moduły śledzące MPP łańcucha służą do uzyskania jak największej mocy z łańcuchów PV oróżnym ustawieniu, kącie nachylenia lub strukturze modułów.

3.2.1 Obniżenie mocy znamionowej

Obniżenie mocy znamionowej jest sposobem zabezpieczenia falownika przed przeciążeniem lub potencjalnymi usterkami. Ponadto funkcja obniżenia mocy znamionowej może także zostać uaktywniona w związku z wymaganiami sieci elektroenergetycznej. Sytuacje wymagające obniżenia mocy znamionowej falownika są następujące:

• nadmierna temperatura (w tym temperatura otoczenia i temperatura modułu)

- wysokie napięcie wejściowe
- zbyt niskie napięcie sieciowe
- zbyt wysoka częstotliwość sieciowa
- współczynnik mocy (gdy wartości wykraczają poza wartości znamionowe)
- duża wysokość nad poziomem morza

3.2.2 DRM ("AU" / "NZ")

falownik jest wyposażony w listwę zaciskową do podłączenia urządzenia do zarządzania zapotrzebowaniem na moc (DRED). DRED wykrywa tryby zarządzania zapotrzebowaniem (DRM). falownik rozpoznaje wszystkie obsługiwane polecenia zarządzania zapotrzebowaniem na moc i reaguje na nie w ciągu 2 s. Informacje o sposobie podłączenia zawiera "6.11 Przyłącze DI".

Tryby DRM obsługiwane przez falownik są wyszczeg ó lnione w następującej tabeli.

Karta. 3-1	Tryby	zarządzania	zapotrzebov	vaniem na	n moc	(DRM)
------------	-------	-------------	-------------	-----------	-------	-------

Tryb	Objaśnienie
DRM0	falownik znajduje się w stanie "Wyłączenie".
DRM1	Moc importowana z sieci elektroenergetycznej wynosi 0.
	Moc importowana z sieci elektroenergetycznej nie może przekroczyć
DRIMZ	50% mocy znamionowej.
	Moc importowana z sieci elektroenergetycznej nie może przekroczyć
DRIVIS	75% mocy znamionowej.
	Moc importowana z sieci elektroenergetycznej wynosi 100% mocy
DRM4	znamionowej, ale podlega ograniczeniom wynikającym z innych
	aktywnych DRM.
DRM5	Moc podawana do sieci elektroenergetycznej wynosi 0.
DDMG	Moc podawana do sieci elektroenergetycznej nie może przekroczyć
DRIVIO	50% mocy znamionowej.
	Moc podawana do sieci elektroenergetycznej nie może przekroczyć
	75% mocy znamionowej.
	Moc podawana do sieci elektroenergetycznej wynosi 100% mocy
DRM8	znamionowej, ale podlega ograniczeniom wynikającym z innych
	aktywnych DRM.

DRED może wykrywać więcej niż jeden DRM r ó wnocześnie. Kolejność pierwsze ń stwa reakcji na wiele DRM przedstawiono w następującej tabeli.

Wiele tryb ó w	Kolejność pierwsze ń stwa
DRM1…DRM4	DRM1 > DRM2 > DRM3 > DRM4
DRM5…DRM8	DRM5 > DRM6 > DRM7 > DRM8

3.2.3 Zakres regularnych napięć roboczych

falowniky mogą pracować w dopuszczalnym zakresie napięć przez co najmniej określony czas obserwacji. Ustawienie warunk ó w zależy od tego, czy połączenie jest następstwem normalnego rozruchu czy automatycznego powt ó rnego połączenia po zadziałaniu systemu ochrony interfejsu.

Gdy wartość napięcia przekracza poziomy robocze, falownik zostaje odłączony od sieci w ciągu okresu ochronnego. Jeśli zakł ó cenie trwa krócej niż wymagany okres ochronny, a po jego wystąpieniu napięcie powróci do normalnych poziomów, w ó wczas falownik może podłączyć się ponownie do sieci.

3.2.4 Zakres regularnych częstotliwości roboczych

falownik może pracować w swoim zakresie częstotliwości przez co najmniej określony czas obserwacji. Ustawienie warunk ó w zależy od tego, czy połączenie jest następstwem normalnego rozruchu czy automatycznego powt ó rnego podłączenia po zadziałaniu systemu ochrony interfejsu.

Gdy wartość częstotliwości przekracza poziomy robocze, falownik zostaje odłączony od sieci i rozpoczyna się odliczanie okresu ochronnego. Jeśli zakł ó cenie trwa kr ó cej niż wymagany okres ochronny, a po jego wystąpieniu częstotliwość powr ó ci do normalnych poziom ó w, w ó wczas falownik może podłączyć się ponownie do sieci.

3.2.5 Regulacja mocy biernej

Na potrzeby obsługi sieci falownik może pracować w trybach regulacji mocy biernej. Tryb regulacji mocy biernej można ustawić z poziomu aplikacji iSolarCloud. Szczeg ó łowe informacje zawiera "8.5.3 Tryb regulacji mocy biernej".

3.2.6 Sterowanie odbiornikami

W falownikze jest wbudowany wielofunkcyjny styk bezpotencjałowy (przekaźnik DO), który może służyć do sterowania odbiornikami za pośrednictwem stycznika. Patrz "6.10 Przyłącze DO" w sprawie sposobu podłączenia kabli.

Użytkownik może ustawić tryb sterowania zależnie od indywidualnych potrzeb. Patrz "8.10.9 Regulacja Obciążenia" w sprawie ustawie ń aplikacji iSolarCloud.

Tryb czasowy: jest wyznaczana godzina rozpoczęcia i godzina zako ń czenia. Funkcja DO będzie aktywna w tym przedziale czasowym.

Przełącz tryb : funkcja DO może zostać uaktywniona lub dezaktywowana.

Tryb inteligentny: jest wyznaczana godzina rozpoczęcia, godzina zakończenia i zoptymalizowana moc. Gdy w tym przedziale czasowym eksportowana moc osiągnie poziom zoptymalizowanej mocy, funkcja DO zostanie uaktywniona.

3.3 Zarządzanie akumulatorem

Z systemem PV ESS są obecnie kompatybilne akumulatory litowo-jonowe SUNGROW, LG Chem, BYD i Pylontech. W przyszłości lista kompatybilnych modeli zostanie wydłużona.

Marki i modele akumulatorów obsługiwanych obecnie są przedstawione w następującej tabeli.

Marka	Model	Wersja oprogramowania	
Marka	Wodel	wbudowanego	
SUNG- ROW	SBR096/128/160/192/224/256	≥ SBRBCU-S_22011.01.05	
	RESU7H_Type_R	Wersja przetwornicy DC-DC \ge 4.8	
Chem	RESULTOH Type R	System zarządzania akumulatorem	
Chem	NESCHON_Type_N	(BMS) w wersji ≥ 1.7.0.1	
	Battery-Box HV 5.1, 6.4, 7.7, 9.0,	> \/2 013	
	10.2, 11.5	≥ \$3.013	
	Battery-Box Premium HVS 5.1, 7.7,	System zarządzania akumulatorem	
BAD	10.2, 12.8	(BMS) w wersji ≥ 3.16	
	Battery-Box Premium HVM 11.0,	Układ zarządzania akumulatorem	
	13.8, 16.6, 19.3, 22.1	(BMU) w wersji ≥ 3.7	
Pylonte-	Powercube-X1/X2/H1/H2	≥ V4.6	
ch	Force H1/H2	≥ V1.3	

Tabela jest często aktualizowana. Jeśli dany moduł nie figuruje w tabeli, można skontaktować się z SUNGROW, aby dowiedzieć, się czy jest obsługiwany.

falownik wykonuje cykle ładowania, rozładowywania i pielęgnacji akumulatora zależnie od jego statusu przekazywanego przez BMS pod kątem osiągnięcia jak najdłuższego czasu jego eksploatacji.

UWAGA

f

Zalecane parametry podane w tym rozdziale mogą być aktualizowane lub weryfikowane w związku z rozwojem produktu. Najnowsze informacje zawiera instrukcja otrzymana od producenta akumulatora.

Definicja stan ó w

Zdefiniowano trzy stany akumulatora przypisane do różnych zakresów napięcia, aby uniknąć przeładowania i głębokiego rozładowania akumulatora. Są one przedstawione w następującej tabeli.

SUNGROW

Tvn	Napięcie w złączu / SOC			
461	Pusty	Normalny	Pełny	
SUNGROW (SBR096/128/160/ 192/224/256)	SOC < 5 %	5%100% (domyślnie)	SOC = 100 %	
LG Chem (RESU7H_Type_R) LG Chem (RESU10H_Type_ R)	SOC < 8%	8%100% (domyślnie)	SOC = 100%	
BYD (Battery-Box HV)	SOC < 10%	10%100% (domyślnie)	SOC = 100%	
BYD (Battery-Box Premium HVM / HVS)	SOC < 5%	5%100% (domyślnie)	SOC = 100%	
Pylontech (Powercube-X1/ X2/H1/H2) Pylontech (Force H1/H2)	SOC < 8%	8%100% (domyślnie)	SOC = 100%	

Karta. 3-2 Definicja stan ó w akumulatora

W stanie off-grid pob ó r mocy z akumulatora LG Chem do zasilania odbiornik ó w nie może przekraczać 5 kW (takie jak RESU10H_Type_R). Akumulator LG Chem musi zostać podczas pierwszego użycia z falownikem uaktywniony przez podłączenie falownika do zasilania z instalacji PV lub sieci elektroenergetycznej.

Limity SOC akumulatorów litowo-jonowych mogą być modyfikowane z poziomu aplikacji iSolarCloud przez osoby wykwalifikowane.

3.3.1 Zarządzanie ładowaniem

Zarządzanie ładowaniem awaryjnym

Funkcja zarządzania ładowaniem awaryjnym służy do ochrony akumulatora przed szkodami wyrządzanymi przez długotrwałe nadmierne rozładowywanie. W trakcie

ładowania awaryjnego falownik nie reaguje na polecenie rozładowywania. Warunki ładowania awaryjnego różnych typów akumulatorów są opisane w następującej tabeli.

Karta. 3-3 Zarządzanie ładowaniem a	awaryjnym akumulatora li	towo-jonowego
-------------------------------------	--------------------------	---------------

Stan	Warunki	
	Musi być spełniony dowolny z następujących warunk ó w:	
Rozpoczęcie	• SOC \leq (min. SOC) - 3% (jeśli min. SOC \geq 3%).	
	Wyzwolone ostrzeżenie przed podnapięciem akumulatora.	
	Otrzymanie przez falownik polecenia ładowania awaryjnego.	
	Muszą być spełnione wszystkie następujące warunki:	
Zako ń cze- nie	• SOC \geq (min. SOC) - 1% (jeśli min. SOC \geq 3%).	
	Niewystępowanie ostrzeżenia przed podnapięciem akumulatora.	
	Nieotrzymywanie przez falownik polecenia ładowania awaryjnego.	

Karta. 3-4 Domyślne wa	arunki SOC zarz a dzania ła	adowaniem akumulatora	litowo-jonowego
,	· · ·		, ,

Тур	Początkowy SOC	Ko ń cowy SOC
SUNGROW	$SOC \leq 2\%$	$SOC \ge 4\%$
LG Chem	$SOC \leq 5\%$	$SOC \ge 7\%$
BYD (Battery-Box HV)	SOC ≤ 7%	SOC ≥ 9%
BYD (Battery-Box Premium HVM / HVS)	SOC ≤ 2%	SOC ≥ 4%
Pylontech	$SOC \leq 5\%$	$SOC \ge 7\%$

Zarządzanie normalnym ładowaniem

Gdy napięcie akumulatora wypada w normalnym zakresie, falownik może ładować akumulator, dopóki moc PV przekracza pobór mocy odbiorników, pilnując, aby nie został przeładowany.

Jako maksymalny dozwolony prąd ładowania przyjmuje się mniejszą wartość z następujących:

- maksymalny prąd ładowania falownika (30 A);
- maksymalny / zalecany prąd ładowania określony przez producenta akumulatora.

Z tego powodu moc ładowania akumulatora może nie osiągać mocy znamionowej.

- Jeśli napięcie PV jest większe niż wartość górnego limitu napięcia MPP (1000 V), akumulator nie może być ładowany.
- falownik hybrydowy rozpocznie ładowanie akumulatora, gdy wartość eksportowanej mocy przekroczy domyślną wartość progową 70 W.

SUNGROW

i

3.3.2 Zarządzanie rozładowywaniem

Zarządzanie rozładowywaniem może skutecznie uchronić akumulator przed głębokim rozładowaniem.

Jako maksymalny dozwolony prąd rozładowywania przyjmuje się mniejszą wartość z następujących:

- maksymalny prąd rozładowywania falownika (30 A);
- maksymalny / zalecany prąd rozładowywania określony przez producenta akumulatora.

Z tego powodu moc rozładowywania akumulatora może nie osiągać mocy znamionowej.

- Jeśli napięcie PV jest większe niż wartość górnego limitu napięcia MPP (1000 V), akumulator nie może być rozładowywany.
- System hybrydowy rozpocznie rozładowywanie akumulatora, gdy wartość importowanej mocy przekroczy wartość progową 70 W.

3.4 Komunikacja i konfiguracja

falownik zawiera r ó żne złącza do monitorowania urządzenia i instalacji, w tym RS-485, Ethernet, WLAN i CAN. Ich parametry można konfigurować w celu dostosowania ich działania do indywidualnych potrzeb. Wszystkie informacje o falownikze są dostępne za pośrednictwem aplikacji iSolarCloud.

4 Rozpakowywanie i przechowywanie

4.1 Rozpakowanie i sprawdzenie

Przed dostawą falownik jest poddawany dokładnym testom i surowej kontroli. Jednak podczas transportu mogą nastąpić uszkodzenia. W związku z tym po odebraniu urządzenia należy je dokładnie obejrzeć.

- Sprawdzić, czy na opakowaniu nie są widoczne żadne uszkodzenia.
- Sprawdzić, czy dostawa jest kompletna, por ó wnując ją z listem przewozowym.
- Rozpakować zawartość i sprawdzić, czy nie jest ona uszkodzona.

W razie stwierdzenia uszkodzenia lub braków należy skontaktować się z firmą SUNGROW lub dostawcą.

Najlepiej przechowywać falownik w oryginalnym opakowaniu. Dlatego nie należy go wyrzucać.

4.2 Identyfikacja falownika

Tabliczka znamionowa znajduje się zarówno na falownikze, jak i na skrzyni pakunkowej. Zawiera ona informacje na temat typu falownika, ważne dane techniczne, oznaczenia instytucji certyfikacyjnych oraz numer seryjny nadany i rozpoznawany przez firmę SUNGROW. Przykład dla modelu SH10RT.

Rys. 4-1 Tabliczka znamionowa falownika

* Przedstawiony rysunek ma charakter wyłącznie poglądowy. Rzeczywisty produkt może się od niego różnić.

Poz.	Opis
1	Logo SUNGROW oraz typ produktu
2	Dane techniczne falownika
3	Znaki instytucji certyfikacyjnych falownika
4	Nazwa firmy, witryna internetowa oraz kraj produkcji

Karta. 4-1 Opis ikon na tabliczce znamionowej

Ikona	Opis
\otimes	Oznaczenie zgodności RCM
\mathbf{X}	Nie utylizować falownika razem z odpadami komunalnymi.
X	falownik nie zawiera transformatora
	Należy skorzystać z odpowiednich instrukcji.

4.3 Zakres dostawy

Inwerter	Wspornik do montażu ściennego	Zestaw kołka rozprężnego (x4) ^a	Śruby M4 i podkładki (x2)
Zestaw złącza AC/ rezerwy (x2)	Blokada (opcjonalna)	Końcówka zaciskowa przewodu (x5) b	Złącza PV ^C
Styk zagniatany ^C	Zestaw złącza SUNCLIX	Zestaw złącza LAN	Zestaw złącza COM
Moduł WiNet-S	Smart Energy Meter	Kabel RS-485	Zacisk OT
Dokumentacja ^d			

a) Każdy zestaw zawiera wkręt samogwintujący i dybel rozporowy.

b) Zestaw zawiera końcówki zaciskowe przewodu spełniające dwie specyfikacje (po 5 dla każdej specyfikacji) używane do podłączania przewodów AC. Należy wybrać zaciski odpowiednie dla przekroju poprzecznego przewodu.

c) Dwie lub trzy pary, w zależności od modelu falownika.

d) Dokumentacja obejmuje skróconą instrukcję obsługi falownika, listę pakunkową, etykiety ostrzegawcze, świadectwa jakości oraz raporty z bada ń produktu.

4.4 Przechowywanie falownika

Jeśli falownik nie będzie montowany od razu, należy go odpowiednio przechować.

• falownik należy przechowywać w oryginalnej skrzyni pakunkowej, umieszczając wewnątrz pochłaniacz wilgoci.

- Temperatura w miejscu przechowywania musi się zawsze mieścić w przedziale od -30 °C do +70 °C, a wilgotność w przedziale od 0 do 95%, bez skraplania.
- W przypadku magazynowania w stosach liczba warstw stosu nie może przekraczać limitu wskazanego na skrzyni pakunkowej.
- Opakowanie musi być ustawione pionowo.
- Jeśli falownik był przechowywany dłużej niż pół roku, przed użyciem powinien zostać dokładnie obejrzany i wypró bowany przez osobę wykwalifikowaną.
5 Montaż mechaniczny

5.1 Bezpiecze ń stwo w trakcie montażu

Przed instalacją upewnić się, że nie ma żadnych połącze ń elektrycznych. W celu uniknięcia porażenia prądem lub innych obraże ń, uważać, aby nie przewiercić żadnych instalacji elektrycznych ani hydraulicznych.

A PRZESTROGA

Ryzyko obrażeń w wyniku niewłaściwego obchodzenia się z urządzeniem

- Zawsze przestrzegać instrukcji przy przesuwaniu i pozycjonowaniu falownika.
- Nieprawidłowa obsługa może spowodować poważne obrażenia ciała. Niedostateczna wentylacja może pogorszyć wydajność systemu.
- Nie zakrywać radiator ó w, aby utrzymać dobre odprowadzanie ciepła.

5.2 Umiejscowienie – wymagania

Warunkiem bezpiecze ń stwa obsługi, długotrwałej eksploatacji i oczekiwanej skuteczności działania jest poprawny wyb ó r miejsca montażu.

- falownik o stopniu ochrony IP 65 nadaje się do montażu zar ó wno wnętrzowego, jak i napowietrznego.
- falownik należy zamontować w miejscu dogodnym pod względem wykonania połącze ń kablowych, eksploatacji i konserwacji.

5.2.1 Wymagania dotyczące środowiska instalacji

- Środowisko instalacji musi być wolne od materiał ó w palnych lub wybuchowych
- Miejsce montażu musi być niedostępne dla dzieci

 Temperatura otoczenia i wilgotność względna muszą spełniać następujące wymagania

- Chronić przed bezpośrednim działaniem promieni słonecznych, deszczu oraz śniegu.
- falownik musi znajdować się w miejscu o dobrej wentylacji. Zapewnić cyrkulację powietrza.
- Nigdy nie montować falownika w pomieszczeniach mieszkalnych. Generowany przez niego hałas może być uciążliwy w życiu codziennym.

5.2.2 Wymagania dotyczące przewoźnika

Nośnik instalacyjny powinien spełniać następujące wymagania:

Wykonane z materiałów niepalnych

Maksymalna nośność ≥4 razy większa od masy inwertera

5.2.3 Wymagania dotyczące kąta ustawienia

Nie wolno montować falownika poziomo ani w pozycji nachylonej w przód lub w tył. Nie wolno go również ustawiać spodem do góry.

5.2.4 Wymogi dotyczące przejrzystości instalacji

 Zarezerwować wystarczająco dużo miejsca wokół falownika, aby zapewnić wystarczającą ilość miejsca na odprowadzanie ciepła.

• W przypadku wielu falownik ó w należy zachować określony odstęp między nimi.

 falownik należy montować na odpowiedniej wysokości, aby ułatwić odczytywanie wskaza ń kontrolki LED i ustawie ń przełącznik ó w roboczych.

5.3 Narzędzia montażowe

Poniższa lista zalecanych narzędzi montażowych nie jest wyczerpana. W razie potrzeby należy użyć na miejscu narzędzi pomocniczych.

Klucz

Zaciskarka RJ45

Karta. 5-1 Specyfikacja narzędzi

Poz.	Uwaga
а	M4
b	M4
С	Wiertło: φ10
d	Zakres zacisku: 4~6 mm²
е	Zakres pomiaru ≥ 1000 V DC
f	Wielkość szczęki: 16 mm, 46 mm

5.4 Przesuwanie falownika

Przed montażem wyjąć falownik z opakowania i przenieść go do miejsca montażu.

- Zawsze uwzględniać masę falownika.
- Do podnoszenia falownika używać uchwytów umieszczonych po obydwu jego stronach.

- falownik musi być przenoszony przez co najmniej dwie osoby lub przy użyciu odpowiedniego narzędzia transportowego.
- Nie puszczać urządzenia, dop ó ki nie zostanie poprawnie przymocowane.

5.5 Montaż falownika

falownik montuje się na ścianie za pomocą otrzymanego w zestawie wspornika montażowego i kołk ó w rozporowych.

Przy montażu zaleca się zastosowanie zestawu kołka rozporowego, jak na poniższym rysunku.

Podkładka

oporowa

Podkładka sprężynująca

Krok 1 Zamontować wspornik do montażu ściennego.

Uwaga:

- 1 Otwory powinny mieć głębokość około 70 mm.
- 2 Pęcherzyk powietrza we wsporniku musi się znajdować między dwoma liniami wczerwonych okręgach. Będzie to oznaczać, że falownik jest wypoziomowany.
- **Krok 2** Osadzić falownik we wsporniku. Przymocować falownik za pomocą dw ó ch śrub M4 i podkładek. (1,5 N•m)

- - Koniec

6 Wykonanie połącze ń elektrycznych

6.1 Instrukcje bezpiecze ń stwa

Przed wykonaniem jakichkolwiek połącze ń elektrycznych należy pamiętać, że falownik ma dwa źr ó dła zasilania. W trakcie prac elektrycznych wykwalifikowany personel ma obowiązek stosować środki ochrony osobistej (PPE).

Zagrożenie życia związane z obecnością wysokiego napięcia wewnątrz falownika.

- Łańcuch PV będzie generował śmiertelne wysokie napięcie po wystawieniu na działanie światła słonecznego.
- Przed rozpoczęciem wykonywania połącze ń elektrycznych należy odłączyć wyłączniki główne po stronie DC i AC i zabezpieczyć je przed przypadkowym włączeniem.
- Przed wykonaniem połącze ń upewnić się, że wszystkie kable są wolne od napięcia.

- Nieprawidłowo wykonane operacje podczas łączenia kabli mogą spowodować uszkodzenie urządzenia lub obrażenia os ó b.
- Tylko wykwalifikowany personel może wykonywać połączenia kablowe.
- Wszystkie przewody muszą być solidnie podłączone, nieuszkodzone, właściwie zaizolowane oraz mieć odpowiednie parametry.

UWAGA

Należy postępować zgodnie z instrukcjami dotyczącymi bezpiecze ń stwa obowiązującymi w przypadku szereg ó w moduł ó w fotowoltaicznych oraz przepisami dotyczącymi sieci elektroenergetycznej.

- Wszystkie połączenia elektryczne muszą być wykonane zgodnie z normami lokalnymi i krajowymi.
- falownik może być podłączony do sieci elektroenergetycznej tylko za zezwoleniem lokalnego zakładu energetycznego.

6.2 Opis przyłączy

Wszystkie przyłącza elektryczne znajdują się u dołu zespołu.

Rys. 6-1 Zaciski na spodzie falownika

* Przedstawiony rysunek ma charakter wyłącznie poglądowy. Rzeczywisty produkt może się od niego różnić.

Poz.	Nazwa	Opis	
		Dodatnie i ujemne złącza wejściowe DC	
1	Zaciski PV	Dwie lub trzy pary, w zależności od modelu	
		falownika	
2	Przyłącze akumulatora	Złącza kabli zasilających akumulatora	
3	Zacisk WLAN	Złącze modułu WiNet-S	
4	Zacisk LAN	Złącze EMS, routera i rejestratora danych	
5	Dodatkowy zacisk	Do zapewnienia niezawodnego uziemienia	
	uziemienia	Do zapewi lienia niezawodnego uzienienia	
6	Zaciely COM	Złącze Smart Energy Meter, RS-485, BMS/	
6 Zacisk COIVI		CAN, DRM/DI i DO	
7	Zapiels DACK LID	Zacisk AC do podłączania tylko odbiornik ó w	
1	Zacisk BACK-UP	rezerwy	
0		Zacisk AC przyłącza do sieci	
ð	Zacisk GRID	elektroenergetycznej	

Karta. 6-1 Etykieta zacisku COM

Me	eter	BMS	S/CAN		DI/DRM		DO
A2	B2	Н	L	D1/5	D3/7	R	NO
A1	B1	EN_H	EN_G	D2/6	D4/8	С	COM
RS4	485	En	able				

Poz.	Etykieta	Opis
1	Meter (A2, B2) ⑴	 Podłączyć do licznika Smart Energy Meter. (Jeśli montowany jest jeden falownik lub falownik nadrzędny ła ń cucha r ó wnoległych falownik ó w).
		 Uaktywnić komunikację między falownikami pracującymi w układzie r ó wnoległym. (Jeśli montowany jest falownik podrzędny ła ń cucha r ó wnoległych falownik ó w).
		 Podłączyć do akumulatora litowo-jonowego LG Chem, do użytku z zaciskiem uaktywnienia
2	RS485 (A1, B1) (1) (2)	 Podłączyć do zewnętrznego urządzenia w celu odbierania zdalnych poleceń wyłączenia falownika (tylko we Włoszech). Lub uaktywnić komunikację między falownikami pracującymi w układzie równoległym (jeśli montowany jest falownik nadrzędny łańcucha równoległych falowników).
3	BMS/CAN	Do uaktywnienia komunikacji między falownikem a akumulatorem litowo-jonowym
4	Enable	Podłączyć do akumulatora litowo-jonowego LG Chem, do użytku z zaciskiem RS-485
5 DI/DRM		 "AU" /"NZ": urządzenie do zarządzania zapotrzebowaniem na moc (DRED) "IT": system zabezpieczenia interfejsu (SPI)
		 "DE": odbiornik zdalnego sterowania mocą (RCR)
6	DO	 Podłączyć do zewnętrznego wskaźnika świetlnego i/lub brzęczyka w celu sygnalizacji alarmu.
		 Podłączyć do odbiornika domowego (jak pompa ciepła SG Ready) w celu zarządzania mocą.

Karta. 6-2 Opis etykiety zacisku COM

(1) Jeśli falownik jest podłączony do urządzenia monitorującego innej firmy, należy sprawdzić, z którego interfejsu komunikacyjnego korzysta to urządzenie i czy spowoduje on utratę pewnych funkcji falownika.

(2) Jeśli do połączenia r ó wnoległego w falownikze nadrzędnym został użyty interfejs RS485 (A1, B1), do falownika nadrzędnego nie można podłączyć akumulatora LG Chem (kt ó ry używa interfejsu RS485 do komunikacji). Może on jednak zostać podłączony do falownika podrzędnego.

6.3 Przegląd połącze ń elektrycznych

Schemat okablowania instalacji

Podłączenie elektryczne należy zrealizować w następujący spos ó b:

Pozycja	Znaczenie
A	Router
В	Akumulator
С	Łańcuch PV
D	Wyłącznik AC
E	Smart Energy Meter
F	Sieć
G	Odbiorniki rezerwy
Н	Urządzenie monitorujące

Karta. 6-3 Wymagania dla kabli

			Spee	cyfikacja
N I.v	Kabal	Kabel Typ	Średnica	
INF	Kabel		zewnętrzna	Przekrój (mm²)
			(mm)	
	Kabal	Ekranowany		
1		napowietrzny kabel	5,3 ~ 7 mm	8 * 0,2 mm²
Et	Ethernet	sieciowy CAT 5E		
		Spełniający wymagania		1 mm^2
Pr	Przew ó d	1000 V i 35 A	- 5 5 ~ 8 mm	4 11 11 11
2	zasilający	Spełniający wymagania	0,0 011111	6 mm²
		1000 V i 40 A		OTIIII
		Wielożyłowy		
		napowietrzny kabel		
3	Kabel DC	miedziany	6 ~ 9 mm	4 ~ 6 mm²
		Spełniający wymagania		
		1000 V i 30 A		
4		Wielożyłowy	14 ~ 25 mm	6 ~ 10 mm²
5	Kabel AC*	napowietrzny kabel	$12 \sim 14 \text{mm}$	4 ~ 6 mm²
5		miedziany	12 ~ 14 mm	

			Spe	cyfikacja
Nir	Kabal	Turn	Średnica	
INF	Kabel	тур	zewnętrzna	Przekr ó j (mm²)
			(mm)	
		Skretka ekranowana		2 * (0,5 ~ 1,0)
Kabel		Skiętka ekianowana	_	mm²
6 komunikacyj- ny	komunikacyj-	Ekranowany	5,3 ~ 7 mm	
	ny	napowietrzny kabel		8 * 0,2 mm²
		sieciowy CAT 5E		
	Dodatkowy	Jednożyłowy kabel		
7	kabel uziemiający*	miedziany do	Taki sam jak pi	rzew ó d PE w kablu
1		zastosowań		AC
		zewnętrznych		

* Jeśli lokalne przepisy przewidują inne wymagania dotyczące kabli, należy dostosować specyfikację kabli do lokalnych przepis ó w.

Schemat okablowania rezerwy

W Australii i Nowej Zelandii przewody neutralne po stronie sieci i stronie rezerwy muszą być ze sobą połączone ze względu na przepisy wykonywania instalacji AS/NZS_3000. W przeciwnym razie funkcja rezerwy nie będzie działała.

Nr	SH5.0/6.0RT	SH8.0/10RT	
1	Wyłącznik DC 40 A / 600 V*		
2	Wyłącznik AC 25 A / 400 V	Wyłącznik AC 32 A / 400 V	
3	Wyłącznik AC	25 A / 400 V	
4	Zależy od o	dbiornik ó w	
5	Zależy od odbiornik ó w A	GD i wydajności falownika	
67	Wyłącznik r ó żnicowoprądowy 30 n	nA (zgodnie z lokalnymi przepisami)	

Uwaga: * Jeśli w akumulatorze jest wbudowany łatwo dostępny wewnętrzny wyłącznik DC, dodatkowy wyłącznik DC jest zbędny.

Uwaga: Wartości podane w tabeli są wartościami zalecanymi i można je zmodyfikować zależnie od lokalnych warunk ó w.

W przypadku innych krajów następujący schemat należy traktować jako przykład instalacji podłączonej do sieci bez specjalnych wymagań dotyczących połączenia okablowania.

Nr	SH5.0/6.0RT	SH8.0/10RT		
1	Wyłącznik DC	Wyłącznik DC 40 A / 600 V*		
2	Wyłącznik AC 25 A / 400 V	Wyłącznik AC 32 A / 400 V		
3	Wyłącznik AC	C 25 A / 400 V		
4	Zależy od o	Zależy od odbiornik ó w		
5	Zależy od odbiornik ó w AGD i w	ydajności falownika (opcjonalnie)		
67	Wyłącznik różnicowopr	ądowy 30 mA (zalecany)		
8	Wyłącznik r ó żnicowopra	ądowy 300 mA (zalecany)		

Uwaga: * Jeśli w akumulatorze jest wbudowany łatwo dostępny wewnętrzny wyłącznik DC, dodatkowy wyłącznik DC jest zbędny.

Uwaga: Wartości podane w tabeli są wartościami zalecanymi i można je zmodyfikować zależnie od lokalnych warunk ó w.

W układzie sieciowym TT następujący schemat należy traktować jako przykład instalacji podłączonej do sieci bez specjalnych wymaga ń dotyczących połączenia okablowania.

Nr	SH5.0/6.0RT	SH8.0/10RT	
1	Wyłącznik DC 40 A / 600 V*		
2	Wyłącznik AC 25 A / 400 V	Wyłącznik AC 32 A / 400 V	
3	Wyłącznik A0	C 25 A / 400 V	
4	Zależy od o	odbiornik ó w	
5	Zależy od odbiornik ó w A	GD i wydajności falownika	
67	Wyłącznik r ó żnicowopr	ądowy 30 mA (zalecany)	
8	Wyłącznik r ó żnicowopra	ądowy 300 mA (zalecany)	

Uwaga: * Jeśli w akumulatorze jest wbudowany łatwo dostępny wewnętrzny wyłącznik DC, dodatkowy wyłącznik DC jest zbędny.

Uwaga: Wartości podane w tabeli są wartościami zalecanymi i można je zmodyfikować zależnie od lokalnych warunk ó w.

6.4 Dodatkowe połączenia uziemienia

- Ponieważ falownik jest beztransformatorowy ani biegun ujemny, ani dodatni ła ń cucha prądowego PV nie może być uziemiony. W przeciwnym razie falownik nie będzie pracował poprawnie.
- Podłączyć dodatkowy zacisk uziemienia do punktu uziemienia ochronnego przed podłączeniem kabla AC, kabla PV i kabla komunikacyjnego.
- Złącze uziemienia kabla zacisku pod dodatkowy kabel uziemienia nie może zastępować złącza zacisku PE kabli AC. Obydwa zaciski PE muszą być solidnie uziemione.

6.4.1 Wymagania dla dodatkowego uziemienia

Wszystkie części metalowe nieprzenoszące prądu oraz obudowy urządze ń w systemie PV wytwarzania energii powinny być uziemione, na przykład, uchwyty moduł ó w PV i-obudowa falownika.

Jeśli instalacja fotowoltaiczna zawiera tylko jeden falownik, należy podłączyć dodatkowy przew ó d uziemienia do pobliskiego punktu uziemienia.

Jeżeli instalacja zawiera falowniky połączone równolegle, należy podłączyć punkty uziemienia wszystkich falowników i metalowe ramy montażowe kolektora fotowoltaicznego do przewodu wyrównawczego (zgodnie z lokalnymi warunkami) w-celu utworzenia połączenia wyrównawczego.

6.4.2 Procedura podłączania

There are two additional grounding terminals located at the bottom and right side of the inverter. Connect either one.

Additional grounding cable is prepared by customers.

Krok 1 Przygotować kabel i zacisk OT/DT.

1:Rurka termokurczliwa

2: Zacisk OT/DT

Krok 2 Wykręcić śrubę z zacisku uziemienia i przymocować kabel przy użyciu śrubokręta.

Krok 3 Nałożyć farbę na zacisk uziemienia, aby zapewnić odporność na korozję.

- - Koniec

6.5 Podłączanie kabla AC

6.5.1 Wymagania po stronie AC

Wyłącznik główny po stronie AC

Aby zapewnić możliwość bezpiecznego rozłączenia od sieci, po stronie wyjściowej falownika należy zamontować niezależny, trój- lub czterobiegunowy wyłącznik główny.

Typ falownika	Zalecane natężenie prądu wyłącznika gł ó wnego po stronie AC	
SH5.0RT		
SH6.0RT	25 A	
SH8.0RT	22.4	
SH10RT		

UWAGA

- Ustalić, czy lokalne warunki wymagają wyłącznika AC o większej wytrzymałości prądowej.
- Z jednego wyłącznika gł ó wnego nie może korzystać wiele falownik ó w.
- Nigdy nie włączać obciążenia między falownikem a wyłącznikiem.

Urządzenie monitorujące prąd resztkowy

falownik posiada wbudowany uniwersalny wyłącznik różnicowoprądowy, dzięki czemu falownik zostaje odłączony od zasilania sieciowego, gdy tylko wykryty zostanie prąd upływu przekraczający wartość graniczną.

Jeśli jednak obowiązkowe jest zamontowanie zewnętrznego wyłącznika różnicowoprądowego (RCD), wówczas przełącznik musi zadziałać przy prądzie resztkowym o wartości 300 mA (zalecanej) lub wyższej, zależnie od lokalnych

przepis ó w. Na przykład w Australii w instalacji falownika można użyć dodatkowego wyłącznika r ó żnicowoprądowego 30 mA (typu A).

6.5.2 Montowanie złącza AC

Blok przyłączy AC znajduje się u dołu falownika. Połączenie AC to trójfazowa sieć czteroprzewodowa + podłączenie PE (L1, L2, L3, N i PE).

Krok 1 Wykręcić przyłącze wodoszczelne złącza AC, obracając w lewo.

Krok 2 (opcjonalna) Jeśli średnica zewnętrzna przewodów AC, które mają zostać użyte, wynosi 19 – 25 mm, zdjąć wewnętrzną gumową uszczelkę.

Krok 3 Poprowadzić przew ó d AC o odpowiedniej długości przez przyłącze wodoszczelne.

Krok 4 Zdjąć płaszcz kabla o 80~90 mm, a izolację przewodu odizolować o 12 mm.

Krok 5 W przypadku stosowania przewodu wielordzeniowego z wieloma żyłami miedzianymi należy podłączyć głowicę kablową do końcówki zaciskowej przewodu, przykręcając odpowiednim momentem.

Krok 6 Przymocować wszystkie przewody do odpowiednich zacisków, dokręcając je momentem 1,2 – 1,5 N•m za pomocą wkrętaka, zgodnie z oznaczeniami na złączu, wszczególności przewód "PE". Uważać, aby nie podłączyć przewodu fazowego do styku zacisku "PE" lub "N", ponieważ grozi to uszkodzeniem falownika.

Krok 7 Pociągnąć za przewody, aby sprawdzić, czy są mocno osadzone.

Krok 8 Podłączyć przednie i tylne części. Musi wystąpić słyszalny trzask.

Krok 9 Dokręcić przyłącze wodoszczelne, obracając w prawo.

- - Koniec

6.5.3 Instalacja złącza AC

A NEBEZPIECZEŃSTWO
Wewnątrz falownika może występować wysokie napięcie!
Przed przystąpieniem do podłączania elektrycznego należy się upewnić, że w-
żadnym z nich nie występuje napięcie.
Nie włączać wyłącznika gł ó wnego po stronie AC, dop ó ki wszystkie połączenia
elektryczne falownika nie będą zako ń czone.

- Krok 1 Odłączyć wyłącznik główny po stronie AC i zabezpieczyć go przed ponownym podłączeniem.
- Krok 2 Zdjąć pokrywę wodoodporną z zacisku GRID.

Krok 3 Włożyć złącze AC do zacisku GRID na spodzie falownika na tyle mocno, aby było słyszalne zatrzaśnięcie.

Krok 4 (Opcjonalnie) Włożyć blok w sposób przedstawiony na ilustracji poniżej.

Krok 5 Podłączyć przew ó d PE do uziemienia.

Krok 6 Przew ó d fazowy i "N" podłączyć do wyłącznika gł ó wnego po stronie AC.

UWAGA

Należy sprawdzić układ zacisk ó w na bloku. Nie należy podłączać kabli fazowych do zacisku "PE" ani kabla PE do zacisku "N". W przeciwnym razie może dojść do nieodwracalnego uszkodzenia falownika.

- Krok 7 Podłączyć wyłącznik głó wny po stronie AC do sieci elektroenergetycznej.
- Krok 8 Sprawdzić, czy wszystkie przewody AC są dobrze przykręcone, przykładając klucz dynamometryczny lub lekko za nie ciągnąc.

- - Koniec

6.6 Podłączanie kabla DC

Niebezpiecze ń stwo porażenia prądem!

Układ PV będzie generował śmiertelnie wysokie napięcie po wystawieniu na działanie światła słonecznego.

Upewnić się, że układ PV jest dobrze izolowany do ziemi przed podłączeniem go do falownika.

Przed podłączeniem kolektora PV do falownika upewnić się, że impedancje między zaciskami dodatnimi ła ń cucha PV a uziemieniem oraz między biegunami ujemnymi ła ń cucha PV a uziemieniem w każdym przypadku przekraczają 1 M Ω .

UWAGA

Ryzyko uszkodzenia falownika! Muszą być spełnione następujące wymagania. Nieprzestrzeganie tego zalecenia spowoduje unieważnienie gwarancji.

- Maksymalne napięcie DC i maksymalny prąd zwarciowy dowolnego łańcucha nie może przekroczyć dozwolonych wartości falownika podanych w rozdziale "Dane techniczne".
- Używanie w jednym ła ń cuchu PV moduł ó w PV r ó żnych marek lub modeli albo umieszczenie moduł ó w PV jednego ła ń cucha PV na dachach o r ó żnym ustawieniu nie jest groźne dla falownika, ale może powodować pogorszenie działania instalacji!

6.6.1 Konfiguracja układów wejściowych PV

W Australii i Nowej Zelandii moc DC dowolnego łańcucha PV nie może nigdy przekroczyć pewnego poziomu zależnie od napięcia łańcucha, aby uniknąć obniżenia mocy:

≤ 12,5 kW, jeśli napięcie ła ń cucha jest mniejsze niż 500 V

 \leq 10 kW, jeśli napięcie ła ń cucha wynosi od 500 V do 800 V

 \leq 8 kW, jeśli napięcie ła ń cucha wynosi od 800 V do 1000 V

W falownikze SH5.0/6.0/8.0RT każdy układ wejściowy PV działa niezależnie od siebie i ma własny MPPT. Dlatego wejścia PV mogą się różnić między sobą innym typem modułu PV, liczbą moduł ó w PV w ła ń cuchu, kątem pochylenia i ustawieniem montażu.

W falownikze SH10RT każdy niezależny ła ń cuch PV przypada jedna para zacisk ó w PV. Aby moc wejściowa PV wykorzystywana była jak najlepiej, struktura ła ń cuch ó w PV w wejściach PV2 i PV3 powinna być taka same pod względem typu, liczby, kąta pochylenia i ustawienia moduł ó w PV.

W falownikze SH10RT, jeśli dwa ła ń cuchy PV połączone są zewnętrznie w układ r ó wnoległy, r ó wnoległe ła ń cuchy można podłączyć tylko do PV2 lub PV3, a drugiego nie można wtedy użyć do podłączenia innych ła ń cuch ó w PV.

Przed podłączeniem falownika do wejść PV należy zapewnić warunki zgodne znastępującą specyfikacją elektryczną:

Тур	Limit napięcia jałowego	Maksymalny prąd dla złącza wejścia
SH5.0RT	- 1000 V	30 A
SH6.0RT		
SH8.0RT		
SH10RT		

6.6.2 Wymagania po stronie DC

Zakres dostawy szybkozłączy wejść PV firmy SUNGROW obejmuje odpowiednie złącza wtykowe. Przewody DC należy podłączyć do falownika za pomocą złączy PV wchodzących w zakres dostawy.

Aby zapewnić stopie ń ochrony IP65, używać tylko dostarczonego złącza lub złącza o tej samej ochronie wejścia.

UWAGA

Ť.

Natężenie prądu wejściowego poszczeg ó lnych kanał ó w wejściowych musi być niższe od 30 A.

6.6.3 Montaż złącza PV

Use the MC4 DC terminal within the scope of delivery. Damage to the device due to the use of incompatible terminal shall not be covered by the warranty.

Krok 1 Zdjąć izolację z każdego przewodu DC na odcinku 7 mm.

Krok 2 Zamocować ko ń c ó wki kablowe za pomocą szczypiec zaciskowych.

Krok 3 Przełożyć przew ód przez dławik kablowy. Wsunąć styk zaciskowy do izolatora, aż osiądzie na miejscu. Lekko pociągnąć kabel do tyłu, aby się upewnić, że jest dobrze zamocowany. Dokręcić dławik kablowy i izolator (momentem od 2,5N•m do 3N•m).

Dodatkowe instrukce montażu i podłączania można znaleźć na stronie internetowej producenta konkretnego podzespołu.

Krok 4 Sprawdzić, czy polaryzacja jest właściwa.

UWAGA

W przypadku odwr ó conej polaryzacji falownik nie będzie działał prawidłowo.

- - Koniec

6.6.4 Instalacja złącza PV

Krok 1 Ustawić przełącznik DC w pozycji "OFF".

Krok 2 Sprawdzić poprawność polaryzacji połączenia kabli łańcucha PV i upewnić się, że napięcie jałowe w żadnym przypadku nie przekracza wejściowej wartości granicznej falownika wynoszącej 1000 V.

Krok 3 Podłączyć złącza PV do odpowiednich wejść. Prawidłowe podłączenie zostanie zasygnalizowane kliknięciem.

UWAGA

 Sprawdzić dodatnią i ujemną biegunowość łańcucha PV i podłączyć złącza PV do odpowiednich zacisków dopiero po upewnieniu się, że biegunowość jest prawidłowa.

 Jeśli złącza moduł ó w fotowoltaicznych nie będą pewnie zamocowane, na styczniku może powstać łuk elektryczny lub może dojść do przegrzania. Firma SUNGROW nie ponosi odpowiedzialności za żadne uszkodzenie wynikające z tego powodu.

Krok 4 Aby podłączyć złącza PV innych ła ń cuch ó w PV, należy wykonać powyższe kroki.

Krok 5 Uszczelnić nieużywane przyłącza PV zaślepkami.

- - Koniec

6.7 Podłączenie komunikacji

Funkcja LAN

- System EMS lub rejestrator innej firmy może za pośrednictwem protokołu Modbus TCP/IP w pełni sterować włączaniem/wyłączaniem, obniżaniem parametrów znamionowych, ładowaniem i rozładowywaniem falownika.
- **(Opcjonalnie)** Informacje o działaniu falownika mogą zostać przesłane do serwera iSolarCloud za pośrednictwem routera.

Funkcja WLAN

Gdy jest zamontowany moduł WiNet-S, odpowiednie informacje są dostępne do wglądu w aplikacji iSolarCloud i portalu internetowym iSolarCloud.

Funkcja RS-485

Interfejsy komunikacyjne RS-485 służą do nawiązywania połączenia komunikacyjnego z urządzeniami monitorującymi.

6.7.1 Połączenie Ethernet

Możliwy spos ó b działania połączenia Ethernet za pomocą routera jest przedstawiony na następującej ilustracji.

Rys. 6-2 Połączenie Ethernet z routerem

6.7.1.1 Montowanie złącza LAN

Mając konfekcjonowany standardowy kabel sieciowy z wtykiem RJ45, można pominąć krok 1.

Krok 1 (Opcjonalnie) Za pomocą cęg ó w do przewodu sieci Ethernet zdjąć warstwę izolacji zprzewodu komunikacyjnego i wysunąć odpowiednie przewody sygnałowe. Włożyć pozbawiony izolacji przew ó d komunikacyjny do wtyczki RJ45, zachowując właściwą kolejność i zacisnąć go zaciskarką.

Krok 2 Odkręcić nakrętkę wahliwą od złącza LAN.

Krok 3 Wyjąć wewnętrzną uszczelkę gumową.

Krok 4 Wsunąć wtyk RJ45 w przednie złącze wtykowe na tyle mocno, aby było słyszalne zatrzaśnięcie, i założyć gumową uszczelkę.

- - Koniec

6.7.1.2 Montaż złącza LAN

Krok 1 Odkręcić pokrywę wodoodporną z zacisku LAN.

Krok 2 Włożyć złącze LAN do zacisku LAN na spodzie falownika.

Krok 3 Pociągnąć za przewody, aby sprawdzić, czy są mocno osadzone, a następnie dokręcić nakrętkę wahliwą odpowiednim momentem.

--Koniec

6.7.2 Połączenie WiNet-S

Moduł WiNet-S obsługuje komunikację Ethernet i komunikację WLAN. Nie zaleca się jednoczesnego korzystania z obu metod komunikacji.

Zeskanuj poniższy kod QR, aby uzyskać skróconą instrukcję.

6.7.2.1 Komunikacja Ethernet

Moduł komunikacyjny WiNet-S nie może działać równocześnie z zaciskami A1 i B1 połączenia ła ń cuchowego RS485.

Krok 1 (Opcjonalnie) Ściągnąć warstwę izolacyjną kabla komunikacyjnego ściągaczem do przewodów Ethernet i wyprowadzić na zewnątrz odpowiednie kable sygnałowe. Wsunąć kabel komunikacyjny ze ściągniętą izolacją we wtyk RJ45 w poprawnej kolejności, a następnie zacisnąć zaciskarką.

Krok ten można pominąć w przypadku posiadania konfekcjonowanego kabla sieciowego z wtykiem RJ45.

Krok 2 Odkręcić nakrętkę wahliwą od modułu komunikacyjnego i wyjąć wewnętrzny pierście ń uszczelniający.

Krok 3 Odkręcić obudowę od modułu komunikacyjnego.

Krok 4 Przeprowadzić kabel sieciowy przez nakrętkę wahliwą i uszczelkę do otworu pierścienia uszczelniającego oraz przez obudowę.

Krok 5 Wsunąć wtyk RJ45 w przednie złącze wtykowe na tyle mocno, aby było słychać zatrzaśnięcie i dokręcić obudowę. Zamontować uszczelkę i dokręcić nakrętkę wahliwą.

Krok 6 Odkręcić pokrywę wodoodporną z zacisku WLANi zamontować moduł WiNet-S.

- Krok 7 Lekko potrząsnąć do dłonią, aby sprawdzić, czy jest mocno osadzony.
 - - Koniec

6.7.2.2 Komunikacja WLAN

- Krok 1 Odkręcić pokrywę wodoodporną z zacisku WLAN.
- Krok 2 Zamontować moduł. Lekko potrząsnąć do dłonią, aby sprawdzić, czy jest mocno osadzony, w spos ó b pokazany poniżej.

Krok 3 Spos ó b konfigurowania jest opisany w instrukcji dostarczonej wraz z modułem.

- - Koniec

6.7.3 Połączenie RS-485

W przypadku posiadania tylko jednego falownika, interfejs RS485 może zostać użyty do komunikacji z urządzeniem zewnętrznym.

Jeśli jest utworzony układ równoległy zawierający co najmniej dwa falowniky, połączenie RS485 jest niezbędne do komunikacji między falownikem nadrzędnym i falownikem podrzędnym w sposób przedstawiony na następującej ilustracji.

6.7.3.1 Montowanie złącza COM

Krok 1 Odkręcić nakrętkę wahliwą od złącza COM.

Krok 2 Wyjąć listwę zaciskową.

Krok 3 Wyjąć uszczelkę i przełożyć kabel przez dławik kablowy.

Krok 4 Zdjąć płaszcz kabla i ściągnąć izolację przewod ó w.

Krok 5 Podłączyć przewody do zacisku RS485 w sposób przedstawiony na etykietach na spodzie falownika.

Krok 6 Pociągnąć przewody do zewnątrz, aby sprawdzić, czy są mocno osadzone.

Krok 7 Włożyć listwę zaciskową w złącze na tyle mocno, aby słyszalne było jej zatrzaśnięcie.

Krok 8 Dokręcić nakrętkę wahliwą.

- - Koniec

6.7.3.2 Montaż złącza COM

Krok 1 Zdjąć pokrywę wodoodporną z zacisku COM.

Krok 2 Włożyć złącze COM do zacisku COM na spodzie falownika na tyle mocno, aby było słyszalne zatrzaśnięcie.

- - Koniec

6.8 Podłączanie licznika energii Smart Energy Meter

falownik jest wyposażony w funkcję limitu podawanej mocy umożliwiającą spełnienie odpowiednich norm krajowych lub norm sieci dotyczących mocy wyjściowej w punkcie podłączenia do sieci. Informacje na temat limitu podawanej mocy podano w rozdziale "8.5.1 Ograniczenie podawania".

Informacji o dostępności modeli licznika energii Smart Energy Meter w danej lokalizacji udziela firma SUNGROW.

W tym rozdziale są opisane gł ó wnie przyłącza kabli po stronie falownika. Do licznika Smart Energy Meter jest dołączona instrukcja przedstawiająca spos ó b wykonywana połącze ń po stronie licznika.

Procedura

Szczeg ó łowy opis kabla Smart Energy Meter znajduje się w rozdziale "6.7.3 Połączenie RS-485". Podłączyć przewody do zacisku **Meter** w spos ó b przedstawiony na etykietach na spodzie falownika.

6.9 Przyłącze akumulatora

W tym rozdziale są opisane głównie przyłącza kabli po stronie falownika. Instrukcje otrzymane od producenta akumulatora zawierają informacje o przyłączach po stronie akumulatora i konfiguracji.

Należy posługiwać się narzędziami z odpowiednią izolacją, aby uniknąć przypadkowego porażenia prądem i zwarć. W przypadku nieposiadania narzędzi z izolacją należy zakleić wszystkie odsłonięte powierzchnie metalowe posiadanych narzędzi z wyjątkiem ich końcó wek taśmą elektroizolacyjną.

OSTRZEŻENIE

Złącze wtykowe może być podłączane tylko przez przeszkolonych elektryk ó w.

1 OSTRZEŻENIE

Nie odłączać, gdy urządzenie jest pod napięciem! Złączy akumulatora nie wolno odłączać pod obciążeniem. Mogą zostać wprowadzone w stan bez obciążenia przez całkowite wyłączenie falownika.

6.9.1 Podłączanie kabla zasilającego

W zacisku BAT- jest w
budowany bezpiecznik o wartościach znamionowych 700 V / 50 A.

UWAGA

Między falownikem a akumulatorem powinien zostać zamontowany dwubiegunowy wyłącznik gł ó wny DC z zabezpieczeniem nadprądowym (napięcie znamionowe nie mniejsze niż 600 V i prąd znamionowy nie mniejszy niż 40 A).

Jeśli w akumulatorze jest wbudowany łatwo dostępny wewnętrzny wyłącznik DC, dodatkowy wyłącznik DC jest zbędny.

Wszystkie kable zasilające są wyposażone w wodoszczelne, bezpośrednie złącza wtykowe pasujące do zacisk ó w akumulatora w spodzie falownika.

6.9.1.1 Montowanie złącza SUNCLIX

UWAGA

W trakcie montażu należy uważać, aby nie zanieczyścić, nie wyciągnąć ani nie przesunąć uszczelki w dławiki kablowym. Zanieczyszczone lub przesunięte uszczelki pogarszają skuteczność odprężenia i uszczelnienia.

Krok 1 Zdjąć z kabla 15 mm izolacji.

Krok 2 Wyważyć złącze i wyciągnąć wkładkę z tulei.

Krok 3 Wsunąć kabel ze ściągniętą izolacją w dławik kablowy aż do oporu. W sprężynie będą widoczne przewody. Docisnąć sprężynę na tyle mocno, aby było słychać zatrzaśnięcie.

Krok 4 Wsunąć wkładkę w tuleję i dokręcić dławik kablowy (momentem obrotowym 2 Nm).

--Koniec

6.9.1.2 Montaż złącza SUNCLIX

UWAGA

Te złącza można łączyć tylko z innymi złączami SUNCLIX. Podczas wykonywania połącze ń należy zawsze przestrzegać wartości napięcia znamionowego i prądu znamionowego. Dozwolona jest najmniejsza wsp ó Ina wartość.

Krok 1 Włożyć złącza w zaciski BAT+ i BAT-.

- Krok 2 Sprawdzić, czy złącza są poprawnie osadzone.
 - - Koniec

6.9.2 Podłączanie kabla CAN

Kabel CAN służy do komunikacji między falownikem a akumulatorem litowo-jonowym firmy SUNGROW, BYD oraz Pylontech.

Procedura

Szczeg ó łowy opis kabla CAN znajduje się w rozdziale "6.7.3 Połączenie RS-485". Podłączyć przewody do zacisku **BMS/CAN** w spos ó b przedstawiony na etykietach na spodzie falownika.

6.9.3 Podłączanie kabla Enable

Kabel Enable wraz z kablem RS-485 służy do komunikacji między falownikem a akumulatorem litowo-jonowym LG Chem.

Procedura

Szczeg ó łowy opis kabla RS-485 znajduje się w rozdziale "6.7.3 Połączenie RS-485". Szczeg ó łowy opis kabla Enable znajduje się w rozdziale "6.7.3 Połączenie RS-485". Podłączyć przewody do zacisku **Enable** w spos ó b przedstawiony na etykietach na spodzie falownika.

6.10 Przyłącze DO

W falownikze znajduje się jeden przekaźnik DO pełniący wiele funkcji:

- Sterowanie odbiornikami. W tym przypadku przekaźnik DO steruje stycznikiem, który jest rozwierany lub zwierany w określonych warunkach. Stycznik musi być dobrany do poboru mocy odbiornika, np. typy styczników z serii 3TF30 firmy Siemens (3TF30 01- 0X).
- Alarm zwarcia doziemnego. W tym przypadku jest wymagany wskaźnik świetlny lub brzęczyk jako dodatkowe wyposażenie.
| Przekaźnik | Warunek zadziałania | Opis |
|-----------------------------|---|--|
| Sterowanie
odbiornikami | Tryb sterowania
odbiornikami został
skonfigurowany z
poziomu aplikacji
iSolarCloud. | Przekaźnik zostanie uaktywniony, gdy
będą spełnione warunki trybu
sterowania. Patrz "8.10.9 Regulacja
Obciążenia". |
| Alarm zwarcia
doziemnego | Wystąpienie zwarcia
doziemnego. | Gdy falownik otrzymuje sygnał zwarcia
doziemnego, przekaźnik zwiera styk.
Przekaźnik pozostaje aktywny, dop ó ki
zwarcie nie przestanie występować.
Patrz "8.10.12 Wykrywanie Uziemienia". |
| | | 10x0 51 |

UWAGA

- Między falownikem a urządzeniami musi zostać zamontowany stycznik AC. Zabronione jest podłączanie odbiornika bezpośrednio do złącza DO.
- Prąd styku bezpotencjałowego DO nie może przekraczać 3 A.
- Węzeł DO nie jest sterowany, gdy zasilanie falownika jest wyłączone. Stycznik AC należy połączyć przy wyłączniku ręcznym, aby sterować odbiornikami.

Procedura

Szczeg ó łowy opis kabla DO znajduje się w rozdziale "6.7.3 Połączenie RS-485". Podłączyć przewody do zacisku **DO** w spos ó b przedstawiony na etykietach na spodzie falownika.

6.11 Przyłącze DI

DRM i Zdalne sterowanie mocą obsługują jednocześnie tylko jedną funkcję.

DRM

falownik obsługuje tryby zarządzania zapotrzebowaniem na moc (DRM) określone w normie AS/NZS 4777. W falownikze jest wbudowana listwa zaciskowa do podłączenia urządzenia DRED.

Po podłączeniu DRED wykrywa DRM, zwierając zaciski w sposób, który przedstawia "-Karta. 6-4 Metoda wykrywania DRM".

Karta. 6-4 Metoda wykrywania DRM

Tryb	Wykrywanie przez zwarcie zacisk ó w
DRM0	RiC
DRM1	D1/5 i C
DRM2	D2/6 i C
DRM3	D3/7 i C
DRM4	D4/8 i C
DRM5	D1/5 i R
DRM6	D2/6 i R
DRM7	D3/7 i R
DRM8	D4/8 i R

Tryby od DRM0 do DRM8 są obsługiwane przez falownik i informacje o nich są podane na etykiecie umieszczonej nad zaciskiem COM.

Spos ó b okablowania między falownikem a DRED jest następujący.

Stan zwarcia wyłączników w poszczególnych stanach DRM0 – DRM8 jest przedstawiony w tabeli.

Tryb zarządzania zapotrzebowaniem na moc	Sygnał sterowania	Stan wyłącznika
DRM0	010	Zwarcie S1 i S5
DRM1	OI1	Zwarcie S1
DRM2	012	Zwarcie S2
DRM3	013	Zwarcie S3
DRM4	OI4	Zwarcie S4
DRM5	OI5	Zwarcie S5
DRM6	016	Zwarcie S6

Tryb zarządzania zapotrzebowaniem na moc	Sygnał sterowania	Stan wyłącznika
DRM7	017	Zwarcie S7
DRM8	OI8	Zwarcie S8

Zdalne sterowanie mocą

W Niemczech odbiorniki zdalnego sterowania mocą służą do przekształcania sygnału przesyłu do sieci elektroenergetycznej od zakładu energetycznego i wysyłania go w postaci sygnału styku bezpotencjałowego.

Sposób okablowania styków bezpotencjałowych odbiornika zdalnego sterowania mocą jest przedstawiony na następującym schemacie:

6.11.1 Montowanie złącza COM

Krok 1 Odkręcić nakrętkę wahliwą od złącza COM.

Krok 2 Wyjąć listwę zaciskową.

Krok 3 Wyjąć uszczelkę i przełożyć kabel przez dławik kablowy.

Krok 4 Ściągnąć płaszcz kabla na długości 7 – 10 mm.

Krok 5 Podłączyć przewody do odpowiedniego zacisku w sposób przedstawiony na etykietach na spodzie falownika.

Krok 6 Pociągnąć przewody do zewnątrz, aby sprawdzić, czy są mocno osadzone.

Krok 7 Włożyć listwę zaciskową w złącze na tyle mocno, aby słyszalne było jej zatrzaśnięcie.

Krok 8 Dokręcić nakrętkę wahliwą.

- - Koniec

6.11.2 Montaż złącza COM

Krok 1 Zdjąć pokrywę wodoodporną z zacisku COM.

Krok 2 Włożyć złącze COM do zacisku COM na spodzie falownika na tyle mocno, aby było słyszalne zatrzaśnięcie.

Krok 3 Pociągnąć za przewody, aby sprawdzić, czy są mocno osadzone.

Krok 4 Podłączyć drugi koniec do urządzenia DRED / odbiornika zdalnego sterowania mocą.

--Koniec

6.12 Przyłącze rezerwy

Procedura

Krok 1 Montowanie złącza BACK-UP. Szczegółowe informacje zawiera "6.5.2 Montowanie złącza AC".

Przew ó d PE w zacisku rezerwy jest zbędny w Australii i Nowej Zelandii.

Krok 2 Zdjąć pokrywę wodoodporną z zacisku BACK-UP.

Krok 3 Przystawić złącze rezerwy do zacisku BACK-UP i ścisnąć je na tyle mocno, aby było słyszalne lub wyczuwalne zatrzaśnięcie.

Krok 4 Pociągnąć za wszystkie przewody, aby sprawdzić, czy są mocno osadzone.

- - Koniec

7 Rozruch

7.1 Kontrola przed rozruchem

Przed uruchomieniem falownika należy sprawdzić, czy:

- Przełącznik DC falownika i zewnętrzny wyłącznik szybki są odłączone.
- falownik powinien być gotowy do pracy, konserwacji i serwisowania.
- Nic nie jest pozostawione na g ó rze falownika.
- falownik jest prawidłowo podłączony do urządze ń zewnętrznych, a kable są poprowadzone w bezpiecznym miejscu i chronione przed uszkodzeniami mechanicznymi.
- Wyłącznik gł ó wny po stronie AC jest zgodny z wymogami wskazanymi w niniejszej instrukcji oraz normami lokalnymi.
- Wszystkie nieużywane przyłącza u dołu falownika są odpowiednio zaślepione.
- Znaki i naklejki ostrzegawcze są przymocowane i czytelne.

7.2 Procedura uruchamiania

Jeśli wszystkie wyżej wymienione warunki zostały spełnione, należy postępować następująco, aby uruchomić falownik po raz pierwszy.

- Krok 1 Podłączyć wyłącznik główny po stronie AC.
- Krok 2 (Opcjonalnie) Podłączyć zewnętrzny wyłącznik główny DC między falownikem a akumulatorami, jeśli akumulatory są podłączone.
- Krok 3 (Opcjonalnie) Ręcznie włączyć zasilanie akumulatorów, jeśli akumulatory są podłączone.
- Krok 4 Ustawić przełącznik DC w pozycji "ON". Przełącznik DC może być wbudowany w falownikze lub zamontowany przez klienta. Poczekać co najmniej 5 minut.
- Krok 5 Jeśli nasłonecznienie i warunki sieci spełniają wymagania, falownik będzie pracował normalnie. Łączenie falownika z siecią elektroenergetyczną może potrwać kilka minut lub nawet więcej zależnie od przepisów obowiązujących w kraju wybranym w ustawieniach początkowych oraz rzeczywistego stanu lokalnej sieci elektroenergetycznej.
- Krok 6 Obserwować wskaźnik LED, aby upewnić się, że falownik pracuje normalnie. (Patrz "-Karta. 2-2 Opis kontrolki LED").

- - Koniec

SUNGROW

7.3 Przygotowanie aplikacji

- Krok 1 Zainstalować aplikację iSolarCloud w najnowszej wersji. Patrz "8.2 Pobieranie i instalowanie".
- Krok 2 Zarejestrować konto. Patrz "8.3 Account Registration". W przypadku posiadania konta i hasła od dystrybutora/instalatora lub SUNGROW należy pominąć ten krok.
- Krok 3 Pobrać wcześniej pakiet oprogramowania sprzętowego do urządzenia przenośnego. Patrz "8.10.11 Aktualizacja Oprogramowania Sprzętowego". Pozwoli to uniknąć problem ó w z pobieraniem wynikających ze słabego sygnału sieci w miejscu montażu.

- - Koniec

7.4 Tworzenie elektrowni

Zrzuty ekranu tworzenia elektrowni zostały zamieszczone tylko w celu zilustrowania procesu. Szczeg ó łowe informacje zawiera rzeczywisty ekran.

Krok 1 Otworzyć aplikację, dotknąć ^O w prawym górnym rogu i dotknąć **Select Server**. Wybrać ten sam serwer, który został wybrany podczas rejestrowania.

Login	© …
	Q
Remember Me	
LOGIN	
Forget Password	
Select Server	
WLAN Configuration	
Firmware Download	
Language	
Cancel	

Rys. 7-1 Wybieranie serwera

Krok 2 Wpisać konto i hasło na ekranie logowania i dotknąć Login , aby przejść do ekranu głównego aplikacji.

Krok 3 Dotknąć ikony 💛 w prawym g ó rnym rogu, aby przejść do ekranu tworzenia.

Rys. 7-2 Tworzenie elektrowni

Krok 4 Jako typ elektrowni wybrać RESIDENTIAL i jako typ falownika HYBRID.

		147	BRID
COMMER	ICIAL		PV
RESIDEN	ITIAL	Tap "HYBRIC" when the p hybrid monther.	rant him all least one
Select plant type to choose the right communication device.		Select inverter type to choose the right communication during e. "Tap "TV" when all intertent of the plant are	
SELECT PLANT TYPE		SELECT INVERTER TYPE	
(BACK	× CANCEL	< BACK	× CANCE

Rys. 7-3 Wybieranie typu elektrowni i falownika

Krok 5 Zeskanować kod QR z urządzenia komunikacyjnego lub ręcznie przepisać jego numer seryjny. Dotknąć opcji Next, gdy kod QR lub wpisany numer seryjny zostanie rozpoznany jako poprawny, a następnie dotknąć CONFIRM. Urządzenie przenośne zostało połączone z WiNet-S.

Rys. 7-4 Podłączanie urządzenia przenośnego do WiNet-S

Krok 6 Jako tryb dostępu do Internetu wybrać WLAN (CONNECTED) lub ETHERNET zależnie od faktycznie używanego połączenia. Następujący opis dotyczy trybu dostępu WLAN.

< BACK	(× CANCEL
INTER	RNET ACCE	SS
Salart b	now the inverter	shall connect to the internet
and to 2	SolarCloud	
and to 2	SolarCloud.	
and to 2	SolarCloud. WLAN(C	ONNECTED)

Rys. 7-5 Wybieranie trybu dostępu do Internetu

Krok 7 Na ekranie EASYCONNECT INSTRUCTION zostanie wyświetlony monit. Nacisnąć przycisk wielofunkcyjny na module WiNet-S, aby włączyć tryb EasyConnect. Gdy ten tryb jest włączony, wskaźnik WLAN na WiNet-S szybko pulsuje. Wr ó cić do aplikacji. Na ekranie zostanie wyświetlone potwierdzenie nawiązania połączenia z WLAN falownika. Dotknąć opcji NEXT.

Rys. 7-6 Włączanie trybu EasyConnect

UWAGA

Tryb EasyConnect działa tylko z routerami nadającymi na częstotliwości 2,4 GHz.

Jeśli tryb EasyConnect nie zadziała, należy poszukać opis ó w korzystania z innych tryb ó w w instrukcji WiNet-S.

Krok 8 Podłączyć falownik do sieci routera. Wpisać nazwę sieci i hasło. Dotknąć opcji NEXT i na ekranie zostanie wyświetlone potwierdzenie nawiązania połączenia z siecią routera.

< BACK	× CANCEL
ENTER LOCAL NETWORK	
Enter the password for the local network 2.4Ghz is supported.	Only
Name	
Password	
	240

Rys. 7-7 Podłączanie falownika do sieci routera

- - Koniec

7.5 Inicjowanie urządzenia

falownik jest poprawnie podłączony do routera.

W przypadku braku nowego pakietu aktualizacji urządzenia można pominąć kroki od 1 do 2.

Przebieg procedury inicjowania zależy od kraju. Należy postępować według instrukcji wyświetlanych w aplikacji.

Krok 1 Jeśli jest dostępny nowy pakiet aktualizacji urządzenia, wyświetlony zostanie monit w okienku wyskakującym. Dotknąć opcji UPDATE NOW, aby pobrać najnowszy pakiet aktualizacji.

iSolarCloud pr updates fo	rovides important r your device.
Note: Make su powered on	ure the DC side is when updating.
CANCEL	UPDATE NOW

Rys. 7-8 Przypomnienie o aktualizacji

Krok 2 Po pobraniu aktualizacja trwa około 15 minut. Po poprawnym zako ń czeniu aktualizacji na ekranie zostanie wyświetlony numer wersji przed i po aktualizacji oraz czas aktualizacji. Dotknąć opcji NEXT.

Rys. 7-9 Aktualizowanie falownika

UWAGA

Jeśli urządzenie komunikacyjne zostało zaktualizowane, po aktualizacji należy sprawdzić, czy telefon jest podłączony do WLAN falownika.

Krok 3 Dotknąć opcji Country/Region i wybrać kraj, w którym zamontowany jest falownik.

UWAGA

Jako wartość parametru **Country/Region** należy ustawić kraj (region), wkt ó rym zamontowany jest falownik. W przeciwnym razie falownik może zgłaszać błędy.

Krok 4 Jeśli jako kraj została wybrana Australia, należy także ustawić operatora usługi sieciowej, a następnie typ sieci elektroenergetycznej.

Przedstawiony rysunek jest tylko orientacyjny. Obsługiwani operatorzy usługi sieciowej są podani na posiadanym interfejsie.

Krok 5 Zainicjować parametry zgodnie z wymaganiami lokalnej sieci elektroenergetycznej, jak typ sieci elektroenergetycznej, tryb regulacji mocy biernej itp. Na ekranie zostanie wyświetlona informacja o poprawnym skonfigurowaniu falownika.

Country/Region	
Grid Type Low Witten	2
Feed-in Limitation	9
Feed-in Limitation Value 20.00 km	
Feed-in Linvitation Rabo 100.0 %	
Reactive Power Regulation Mode	
Reactive Power Ratio	
NEXT	

Rys. 7-10 Inicjowanie parametrów

- - Koniec

7.6 Konfigurowanie elektrowni

falownik został dodany do elektrowni i zainicjowany. Stosowne instrukcje zawierają poprzednie rozdziały.

Dystrybutor/instalator, kt ó ry tworzy elektrownię dla użytkownika, musi znać jego adres e-mail. Podczas konfigurowania elektrowni jest wymagane podanie adresu e-mail i na każdy adres e-mail może przypadać tylko jedna rejestracja.

Krok 1 Na ekranie aplikacji zostanie wyświetlony dodany falownik. Dotknąć opcji NEXT , aby skonfigurować elektrownię.

Rys. 7-11 Wyświetlanie dodanego falownika

Krok 2 Wprowadzić informacje o elektrowni w formularzu. Pola zaznaczone * muszą zostać wypełnione.

< BACK	× CANCEL
CONFIGURE PLANT	
Enter plant information.	
 Plant Name 	
8201114K874	
 Country/Region 	
	~
Time Zone	
Plant Address	
Postal Code	
Grid-connected Date	
2021-02-05	~

Rys. 7-12 Wprowadzanie informacji o elektrowni

Krok 3 (Opcjonalnie) Wprowadzić informacje o taryfie w formularzu. Jako cena prądu może zostać ustawiona określona wartość lub taryfa wielostrefowa.

< BACK	× CANCEL
CONFIGURE TARIFF	
Enter tariff information to calculate plant revenue	your
Unit	
CNY	0
Feed-in Tariff (CNY/kWh)	
Time-of-Use Tarit	
Consumption Tariff (CNY/kWh)	
Time-of-Use Tariff	
NEXT	

Rys. 7-13 Wprowadzanie informacji o taryfie

Krok 4 Wpisać adres e-mail użytkownika. Gdy system nie zna jeszcze wpisanego adresu email użytkownika, utworzy dla niego konto i wyśle do niego e-mail. Użytkownik może uaktywnić to konto z poziomu wiadomości e-mail.

Dystrybutor/instalator tworzy elektrownie dla użytkownika i domyślnie może nimi zarządzać.

< BACK	× CANCEL
CONNECT PLANT O	WNER
Please Enter Owner's Email	Address
Email	
Helanar Kronari	

Rys. 7-14 Wprowadzanie adresu e-mail właściciela

Krok 5 Dotknąć opcji NEXT, aby poczekać, aż falownik połączy się z iSolarCloud.

Rys. 7-15 Konfiguracja zako ń czona

Krok 6 (Opcjonalnie) Dotknąć View live data for the device, zaznaczyć Inverter lub Total Plant Devices i dotknąć ALL PLANTS OPEN. Symbol zegara oznacza, że funkcja widoku bieżących danych została włączona. Po dotknięciu falownika zostaną wyświetlone bieżące dane napięcia, prądu, mocy lub krzywej.

Rys. 7-16 Ustawianie funkcji widoku bieżących danych

Informacji o urządzeniach obsługujących funkcję bieżących danych może udzielić serwis Sungrow.

- Krok 7 Dotknąć BACK, aby przejść do ekranu COMPLETED. Dotknąć PDF REPORT, aby wyeksportować raport konfiguracji elektrowni.
- Krok 8 Dotknąć BACK, aby przejść do ekranu COMPLETED. Dotknąć DASHBOARD, aby wracać do tej strony i odświeżać ją ręcznie, dop ó ki nowo utworzona elektrownia nie zostanie wyświetlona ze statusem wskazującym, że została oddana do użytku.

- - Koniec

8 Aplikacja iSolarCloud App

8.1 Krótkie wprowadzenie

Aplikacja iSolarCloud może nawiązać komunikację z falownikem za pośrednictwem WLAN, umożliwiając zdalne monitorowanie, rejestrowanie danych i bezdotykowe serwisowanie falownika. Aplikacja umożliwia także użytkownikowi wyświetlanie informacji o falownikze i ustawionych parametrach.

* Warunkiem bezpośredniego logowania za pośrednictwem WLAN jest posiadanie modułu komunikacji bezprzewodowej opracowanego i wyprodukowanego przez firmę SUNGROW. Aplikacja iSolarCloud może także nawiązać komunikację z falownikem za pośrednictwem przewodowego połączenia Ethernet.

- W niniejszej instrukcji opisano, w jaki spos ó b za pomocą bezpośredniego połączenia WLAN można przeprowadzić konserwację, znajdując się wpobliżu urządzenia.
- Zrzuty ekranu w tej instrukcji pochodzą z wersji 2.1.6 aplikacji na system Android i na danym urządzeniu mogą wyglądać inaczej.

8.2 Pobieranie i instalowanie

Sposób1

A

Pobrać i zainstalować aplikację za pośrednictwem jednego z następujących sklepów z aplikacjami:

- MyApp (Android, użytkownicy w kontynentalnej części Chin)
- Google Play (Android, użytkownicy poza kontynentalną częścią Chin)
- App Store (iOS)

Sposób2

Zeskanować poniższy kod QR lub pobrać i zainstalować aplikację zgodnie zwyświetlanymi informacjami.

Po zainstalowaniu na ekranie głó wnym pojawi się ikona aplikacji.

8.3 Rejestracja konta

Rozróżnia się konta należące do dwóch grup użytkowników, użytkownika koń cowego oraz dystrybutora/instalatora.

- Użytkownik koń cowy może przeglądać informacje o elektrowni, tworzyć elektrownie, ustawiać parametry, udostępniać elektrownie itp.
- Dystrybutor/instalator może pomóc użytkownikowi końcowemu tworzyć elektrownie, zarządzać nimi, instalować je lub konserwować, a także tworzyć użytkowników i organizacje.

Krok 1 Dotknąć opcji REGISTER, aby przejść do ekranu rejestracji.

Krok 2 Wybrać opcję End user lub Distributor/Installer, aby przejść do odpowiedniego ekranu.

Distributor/Installer	End User
European Server	
Email	@gmail.com ~
Send Verificat	In Code
Password	
Confirm Password	
Country/Region	
Time Zone	
Company Name	
Code of Upper Level Insta	iller/Distributor

Rys. 8-1 Wybieranie grupy użytkownika

Krok 3 Wypełnić pola formularza rejestracji, włącznie z wyborem serwera, adresem e-mail, kodem weryfikacji, hasłem i potwierdzeniem, krajem (regionem) i strefą czasową. Dystrybutor/instalator ma uprawnienie do wpisania nazwy firmy oraz kodu dystrybutora/ instalatora wyższego poziomu.

> Kod dystrybutora/instalatora wyższego poziomu można otrzymać od dystrybutora/instalatora wyższego poziomu. Odpowiedni kod może zostać

wpisany tylko wtedy, gdy dana organizacja należy do organizacji dystrybutora/instalatora wyższego poziomu.

- Krok 4 Zaznaczyć Accept privacy protocol i dotknąć przycisku Register, aby zakończyć rejestrację.
 - --Koniec

Ħ

8.4 Logowanie

8.4.1 Wymagania

Konieczne jest spełnienie następujących wymaga ń :

- Strona AC lub strony AC/DC falownika są aktywne.
- Funkcja WLAN na telefonie kom ó rkowym jest włączona.
- Telefon kom ó rkowy znajduje się w zasięgu sygnału sieci bezprzewodowej z modułu komunikacyjnego.

8.4.2 Procedura logowania

- Krok 1 Naciśnij przycisk wielofunkcyjny na module WiNet-S 3 razy, aby włączyć hotspot WLAN. Żadne hasło nie jest wymagane, a ważny czas to 30 minut.
- Krok 2 Podłączyć telefon kom ó rkowy do sieci WiFi o nazwie "SG-xxxxxxxxxx" (xxxxxxxxx to numer seryjny modułu podany z boku modułu komunikacyjnego).
- Krok 3 Otworzyć aplikację, aby przejść do ekranu logowania i nacisnąć przycisk "Dostęp lokalny", aby przejść do kolejnego ekranu.
- Krok 4 Wybrać opcję "WLAN", wprowadzić hasło i nacisnąć przycisk "Logowanie".

Domyślne konto to "użytkownik", a początkowe hasło to "pw1111", kt ó re należy zmienić w celu zabezpieczenia konta.

Rys. 8-2 Bezpośredniego WLAN

Krok 5 Jeśli falownik nie został zainicjowany, należy przejść do ekranu szybkiego nastawiania, aby zainicjować parametr ochrony. Szczeg ółowe informacje zawiera "8.5 Ustawienia początkowe".

< Wstecz Uruchom ponownie	< Wstecz Uruchom ponownie
Parametr zainicjalizowania ochrony	Parametr zainicjalizowania ochrony
Kraj (region) Niency	Kraj (region)
Zainstalowana moc PV I0.00 Mwp	Przedsiębiorstwo energetyczne
Ograniczenie mocy oprowadzanej	Ograniczenie mocy
Wartość graniczna zasilania 750 kw	Wartaid grinisana zaolaria
Nskažnik graniczny wprowadzania 70.0 %	tilao kw Wekaźnik graniczny wprowadziania
Moc pozostałych systemów generowania mocy	100.0 %
Tryb pracy bez połączenia z 👘	Tryb pracy bez połączenia z alecią
Tryb regulacji mocy biernej	
Wapiliczynnik mizcy (P#) Lano	
Wapołczywnik mócy blaniej 0.0 %	

Germany

Except Germany

UWAGA

W pozycji "Kraj (region)" należy ustawić kraj, w którym zamontowany jest falownik. W przeciwnym razie falownik może zgłaszać błędy.

- Krok 6 Po zakoń czeniu nastawiania dotknąć przycisku "Uruchom ponownie" w prawym górnym rogu i urządzenie zostanie zainicjowane. Aplikacja prześle polecenia uruchomienia i urządzenie rozpocznie pracę.
- Krok 7 Po nastawieniu aplikacja wróci automatycznie do strony głównej.
 - - Koniec

8.5 Ustawienia początkowe

8.5.1 Ograniczenie podawania

Ograniczenie podawania służy do kontroli ilości mocy wstrzykiwanej do sieci przez instalację. W pewnych sytuacjach funkcja ta może także nazywać się "Limitem eksportu" lub "Eksportem zerowym". Funkcja ograniczenia podawania wymaga użycia licznika Smart Energy Meter. Bez licznika Smart Energy Meter funkcja ograniczenia podawania będzie niedostępna.

Daramatr	Wartość do	omyślna	Zak	res	
Falameti	Niemcy	Inne kraje	Niemcy	Inne kraje	
Moc instalacji PV	Moc znamionowa	-	Moc znamion	owa ~ 300.00	
Ograniczenie mocy wprowadzanej	Na	Poza	Na/	Poza	
Wartość graniczna zasilania	Moc instalacji PV × 70% *	Moc znamion- owa	0 ~ Moc instalacji PV	0 ~ Moc znamionowa	
Wskaźnik graniczny wprowadzania	70.0% *	100.0%	0 ~ 1	00%	
Moc pozostałych system ó w generowania mocy	Zależy od mocy	r falownika inn	ych firm		

Karta. 8-1	Opis paramet	r ó w ogra	aniczenia p	odawania
------------	--------------	------------	-------------	----------

*Jeśli regulacją mocy steruje rejestrator innej firmy, należy jako wartość domyślną ograniczenia mocy wybrać 100%.

8.5.2 Tryb pracy bez połączenia z siecią

Tryb off-grid jest domyślnie wyłączony. Użytkownik może ustawić wartość parametru "Zarezerwowany stan naładowania (SOC) akumulatora dla pracy bez połączenia z siecią". Stan naładowania akumulatora zarezerwowany do pracy bez połączenia z siecią (off-grid) jest równy minimalnemu poziomowi akumulatora w stanie on-grid. Stan naładowania akumulatora zarezerwowany do pracy bez połączenia z siecią będzie wykorzystywany do zasilania odbiorników rezerwy w przypadku awarii sieci elektroenergetycznej.

8.5.3 Tryb regulacji mocy biernej

Falownik ma funkcję regulacji mocy biernej. Parametr "Tryb regulacji mocy biernej" umożliwia uaktywnienie tej funkcji i wybranie odpowiedniego trybu regulacji.

Tryb	Opisy
Off	PF jest ustalony na poziomie +1,000.
PF	Regulację mocy biernej umożliwia parametr PF (wsp ó łczynnik mocy).
Qt	Regulację mocy biernej umożliwia parametr "Q-Var limits" (w %).
Q(P)	Parametr PF zmienia moc wyjściową falownika.
Q(U)	Moc bierna zmienia się z napięciem sieciowym.

Karta. 8-2 Opisy tryb ó w regulacji mocy biernej:

Tryb "OFF"

Funkcja regulacji mocy biernej jest nieaktywna. Na PF jest nałożony limit +1,000.

Tryb "PF"

Wsp ó łczynnik mocy jest ustalony i nastawa mocy biernej jest obliczana na podstawie bieżącej mocy. Wsp ó łczynnik mocy waha się w zakresie od 0,8 wyprzedzającego do 0,8 op ó źnionego.

Wyprzedzający: falownik pobiera moc bierną z sieci.

Op ó źniony: falownik oddaje moc bierną do sieci.

Tryb "Qt"

W trybie Qt znamionowa moc bierna instalacji jest ustalona i moc bierna oddawana jest z instalacji zgodnie ze współczynnikiem dostarczanej mocy biernej. Parametr "Współczynnik mocy biernej" może być ustawiony z poziomu aplikacji.

Zakres ustawienia wsp ó łczynnika mocy biernej wynosi 0~100% lub 0~-100%, zależnie od tego czy regulacja dotyczy indukcyjnej czy pojemnościowej mocy biernej.

Wortoóó

Tryb "Q(P)"

PF na wyjściu falownika jest korygowany zależnie od mocy wyjściowej falownika.

		vvai	1050		
Parametr	Opis	domy	yślna	Zakres	
		DE	AU		
$K_{rzyyyz} \cap (P)$	Wybrać krzywą stosownie do	_			
	lokalnych przepis ó w	A		А, В, С	
	Moc wyjściowa w punkcie P1				
QP_P1	na krzywej trybu Q(P) (-	20%	25%	10% ~ 100%	
	wyrażona procentowo)				
	Moc wyjściowa w punkcie P2				
QP_P2	na krzywej trybu Q(P) (-	50%		20% ~ 100%	
	wyrażona procentowo)				
	Moc wyjściowa w punkcie P3	100%			
QP_P3	na krzywej trybu Q(P) (-			20% ~ 100%	
	wyrażona procentowo)				
	Wsp ó łczynnik mocy w punkcie	1			
QP_KI	P1 na krzywej trybu Q(P)			Krzywa A/C:	
QP_K2	Wsp ó łczynnik mocy w punkcie			0,8~1	
	P2 na krzywej trybu Q(P)	I		Krzywa B:	
QP_K3	Wsp ó łczynnik mocy w punkcie	0.05	0.00	-0,6~0,6	
	P3 na krzywej trybu Q(P)	0,95	0,90		

Karta. 8-3 Opisy parametr ó w trybu "Q(P)":

Parametr	Opis	Wartość domyślna DE AU	Zakres
QP_ EnterVoltage	Pr ó g wartości procentowej napięcia uaktywnienia funkcji Q (P)	105%	100% ~ 110%
QP_ ExitVoltage	Pr ó g wartości procentowej napięcia dezaktywowania funkcji Q(P)	100%	90% ~ 100%
QP_ ExitPower	Pr ó g wartości procentowej mocy dezaktywowania funkcji Q(P)	20%	1% ~ 20%
QP_ EnableMode	Bezwarunkowe uaktywnienie/ dezaktywowanie funkcji Q(P)	Tak	Tak/ Nie

* Krzywa C jest obecnie zarezerwowana i pokrywa się z krzywą A.

Rys. 8-3 Krzywa Q(P)

Tryb "Q(U)"

Moc bierna na wyjściu falownika jest korygowana zależnie od napięcia w sieci elektroenergetycznej.

Daramotr	Opic	Wartość domyślna		Zakros
Farameti	opis		AU	Zakies
	Wybrać krzywą stosownie do	•		
Krzywa Q(U)	lokalnych przepis ó w		A	А, В, С
Makaźnik	Wsp ó łczynnik histerezy			
VVSKazi lik	napięcia na krzywej trybu Q	0		0~5%
histerezy	(U)			
	Wartość graniczna napięcia			0.0%
QU_V1	sieciowego w punkcie P1 na	93%	90%	80%~
_	krzywej trybu Q(U)			100%

Karta. 8-4 "Q(U)" Opisy parametr ó w trybu:

P3

Parametr Opis		Warto	Zakres		
	opio	DE	AU		
	Wartość Q/Sn w punkcie P1	-60%	-30%	-60% ~ 0	
Q0_Q1	na krzywej trybu Q(U)	0070	0070	00% 0	
	Wartość graniczna napięcia			80% ~	
QU_V2	sieciowego w punkcie P2 na	97%	95,6%	110%	
	krzywej trybu Q(U)			110%	
	Wartość Q/Sn w punkcie P2		0	60% ~ 60%	
QU_Q2	na krzywej trybu Q(U)		0	-00% ~ 00%	
	Wartość graniczna napięcia	102	ALI-108.7%	100%	
QU_V3	sieciowego w punkcie P3 na	103-	AU.100,7 %	100% ~	
	krzywej trybu Q(U)	%	NZ:108,6%	120%	
	Wartość Q/Sn w punkcie P3			<u> </u>	
QU_Q3	na krzywej trybu Q(U)		0	-00% ~ 00%	
	Wartość graniczna napięcia	107	ALI-115.2%	100%	
QU_V4	sieciowego w punkcie P4 na	107-	AU:113,2%	100%~	
	krzywej trybu Q(U)	%	NZ:110,8%	120%	
011 04	Wartość Q/Sn w punkcie P4	6.00/	2001	0 00%	
QU_Q4	na krzywej trybu Q(U)	60% 30%		0~60%	
QU_	Pr ó g mocy czynnej		90%	20% ~	
EnterPower	uaktywnienia funkcji Q(P)		00%	100%	
	Pr ó g mocy czynnej	10%		19/ 209/	
QU_EXITPOWer	dezaktywacji funkcji Q(P)			1% ~ 20%	
				Tak/ Nie /	
				Tak,	
0.11				ograniczone	
	dezektuwowepie funkcii O(L)		Tak	przez	
EnableMode				wsp ó łczyn-	
				nik mocy	
				(PF)	
				. ,	

* Krzywa C jest obecnie zarezerwowana i pokrywa się z krzywą A.

Rys. 8-4 Krzywa Q(U)

8.6 Przegląd funkcji

Aplikacja umożliwia wyświetlanie parametrów i ustawianie funkcji w sposób przedstawiony na następującej ilustracji.

Rys. 8-5 Mapa drzewa funkcji aplikacji

8.7 Strona główna

Stronę główną aplikacji przedstawiono na następującej ilustracji.

Rys. 8-6 Strona główna

Karta. 8-5	Opis	strony	głó	wnej
------------	------	--------	-----	------

Nr	Nazwa	Opis
1	Wykres przepływu ładunku	Przedstawia moc generującą moc fotowoltaiczną, moc podawaną itp. Linia ze strzałką wskazuje przepływ energii między podłączonymi urządzeniami, a kierunek strzałki, kierunek przepływu energii.
2	Dzisiejsza wydajność	Przedstawia moc wytworzoną w ciągu dnia przez falownik.
3	Bezpośrednie dzisiejsze zużycie energii	Przedstawia prąd zużyty bezpośrednio przez odbiorniki w dniu bieżącym
4	SOC akumulatora	Wskazuje pozostałą pojemność akumulatora
5	Dzisiejszy poziom zużycia własnego	Wskazuje stopie ń zużycia na własne potrzeby instalacji PV w dniu bieżącym
6	Pasek nawigacji	Zawiera menu "Strona gł ó wna", "Informacja o przebiegu", "Rekordy" i "Więcej".

SUNGROW

W przypadku nieprawidłowego działania falownika w lewym górnym rogu ekranu wyświetlana jest ikona usterki (A). Naciśnięcie tej ikony umożliwia wyświetlenie szczegółowych informacji o usterce i środków korygujących.

8.8 Informacja o przebiegu

Naciśnięcie przycisku "Informacja o przebiegu" na pasku nawigacji pozwala przejść do ekranu przedstawionego na poniższej ilustracji.

Informacja o przebiegu
Informacja o akumulatorze 🔗
Aktualny akumulator
Brok ekumulatora
Moc akumulatora 0 W
Napięcie akumulatora 0/0 V
Prąd akumulatora LOA
Temperatura akumulatora 0,0 °C
Poziom akumulatora 0.0 %
Stan akumulatora 0,0 %
Maksymalny prąd ładowania (BMS) U.A.
Maksymalny prąd rozładowania (BMS) c A
Dzienna energia ładowania akumulatora PV 0.0 kwn
Lączna energia ladowania akumulatora PV 9 240.0 kWh
Dzienna energia rozładowania akumulatora 0,0 kWh
Eączna energia rozładowania akumulatora 1949/2 kwn
Dzienna energia ładowania akumulatora 0,0 kWh
Egczne energia ładowania akumulatora 9/241.1 kWb
ŵ 😐 o 💬

Rys. 8-7 Informacja o przebiegu

Informacje o przebiegu zawierają informacje o instalacji PV, falownikze, wejściu, wyjściu, sieci, odbiornikach i akumulatorze.

8.9 Rekordy

Naciśnięcie przycisku "Rekordy" na pasku nawigacji pozwala przejść do ekranu przedstawionego na następującej ilustracji.

Rekordy		
N	Wykres	
⊿	Rekordy alarmów	

Rys. 8-8 Rekordy

Na ekranie "Rekordy" użytkownicy mogą przeglądać wykresy oraz zapis alarm ó w.

8.9.1 Wykres

Naciśnięcie przycisku "Wykres" na pasku nawigacji umożliwia przejście na ekran przedstawiający wytwarzanie mocy w ciągu dnia zgodnie z poniższym rysunkiem.

wykres	12217-2227	201	120700
Dzień	Miesiąc	Rok	Razem
	2020-1	0-31	
• IV •	Oplata 🔹 Wipms	endzariw -	
 Barpoák Mos (W) 	idnie zużycie		

Rys. 8-9 Krzywa mocy

Aplikacja wyświetla rejestry wytwarzania mocy w różnych formach, w tym wykres wytwarzania mocy w ciągu dnia oraz histogramy wytwarzania mocy w ciągu miesiąca, roku i łącznie.

Karta. 8-6 Opis rejestr ó w wytwarzania energii

Pozycja	Opis
Wykres wytwarzania	Wskazuje wytwarzanie mocy, ładowanie, moc podawaną
mocy w ciągu dnia	i moc zużywaną na potrzeby własne w dniu bieżącym
Histogram wytwarzania	Wskazuje wytwarzanie mocy, ładowanie, moc podawaną
mocy w ciągu miesiąca	i moc zużywaną na potrzeby własne w ciągu miesiąca
Histogram wytwarzania	Wskazuje wytwarzanie mocy, ładowanie, moc podawaną
mocy w ciągu roku	i moc zużywaną na potrzeby własne w ciągu roku
Histogram łącznego wytwarzania mocy	Wskazuje całkowite wartości wytwarzania mocy,
	ładowania, mocy podawanej i mocy zużywanej na
	potrzeby własne

8.9.2 Rekordy alarm ó w

Dotknąć opcji "Rekordy alarmów", aby przejść do ekranu przedstawionego na ilustracji.

SUNGROW

< v	/stecz	
Rei	kordy alarmów (7)	
	2020-10-31 🛅 - 2020-10-31 🛅	
0	Przerwa w dostawie prądu sieciowego	
	Czan wystąpienia: 2020-10-31 12:09:23	
	Poziom alarmu: Walzne	

Rys. 8-10 Rekordy alarm ó w

Wybrać jeden z zapisów z listy i kliknąć go, aby szczegółowo przejrzeć błąd; informacja jak pokazano na następującym rysunku.

< Wstecz	
Przerwa w	dostawie prądu sieciowego
Poziom alarmi	u: Wažne
Czas wystąpie	mia: 2020-10-31 12:09:23
ldentyfikator a	larmu: 10
Porada dotycz	ajca naprawy
Zazwyczaj urz do sieci po prz Jeżeli błąd po 1. Sprawdź, cz 2. Sprawdź, cz podłączone. 3. Sprawdź, cz prawidłowych napięcia oraz c 4. Jeżeli błąd r centrum obsłu	adzenie zostaje ponownie podłączone sywróceniu normalnego stanu sieci. wtrza się: y zasilanie sieci jest prawidłowe; y wszystkie kabba AC są bepiecznie y kable AC są podłączone do zacisków (linie pod napięciem lub bez odwrócone podłączenie). radal występuje, Skontaktuj się: g likierta Sungrow Power.

Rys. 8-11 Szczeg ó łowe informacje o alarmie o usterce

8.10 Więcej

Naciśnięcie przycisku "Więcej" na pasku nawigacji umożliwia przejście do ekranu "-Więcej" zgodnie z poniższym rysunkiem

Rys. 8-12 Więcej

Ekran "Więcej" obsługuje następujące operacje:

- Ustawianie parametrów, w tym parametrów eksploatacyjnych falownika i parametrów zarządzania energią.
- Aktualizację oprogramowania sprzętowego falownika (ARM/DSP/PVD/CPLD).

8.10.1 Parametry Systemu

Dotknąć opcji "Ustawienia -> Parametry systemu", aby przejść do ekranu przedstawionego na ilustracji.

< Wstecz	
Parametry systemu	
Uruchom ponownie/Wyłączenie Uruchom ponownie	ž
Ustawienie daty 2020-10-31	
Ustawienie czasu 1512:48	

Rys. 8-13 Parametry Systemu

Uruchom ponownie/Wlyłączenie

Dotknąć opcji "Uruchom ponownie/Wlyłączenie", aby móc wysłać polecenie restartu/ wyłączenia do falownika.

W Australii i Nowej Zelandii, gdy jest aktywny tryb DRMO zarządzania DRM opcja "Uruchom ponownie" będzie niedostępna.

Zegar systemu

Właściwe ustawienie godziny w systemie jest bardzo ważne. Nieprawidłowe ustawienie godziny w systemie wpływa bezpośrednio na rejestrowanie danych i wartość wytwarzanej mocy. Zegar ma format 24-godzinny.

8.10.2 Czas Działania

Dotknąć opcji "Ustawienia -> Parametry Eksploatacji -> Czas Działania", aby przejść do ekranu, na którym znajduje się ustawienie "Czas Połączenia" i "Czas Ponownego Podłączania".

< Wstecz	
Czas działania	
Czas połączenia 15 s	
Czas ponownego podłączania 15 a	

Rys. 8-14 Czas Działania

Karta. 8-7 Opis parametr ó w czasu pracy

Parametr	Objaśnienie	Wartość domyśl-	Zakres
Czas Połączenia	Czas przechodzenia przez falownik do trybu działania z trybu oczekiwania w stanie bezusterkowym	60 s	20 s ~ 900 s
Czas Ponownego Podłączania	Czas przechodzenia przez falownik ze stanu usterki do stanu normalnego (- falownik nie pracuje) po wystąpieniu usterki	60 s	0 s ~ 3600 s

8.10.3 Typowe Parametry

Dotknąć opcji "Ustawienia -> Parametry Eksploatacji -> Typowe Parametry", aby przejść do ekranu przedstawionego na ilustracji.

< Wstecz	
Typowe parametry	
Konfiguracja DO	
Wyt.	

Rys. 8-15 Typowe Parametry

Po podłączeniu odbiornika do zaciskó w DO zacznie być przesyłany sygnał sterowania przekaźnikiem. Użytkownicy mogą elastycznie ustawić tryb sterowania konfiguracji DO zależnie od indywidualnych potrzeb.

Karta. 8-8	Tryb ster	rowania ko	onfiguracji DO
------------	-----------	------------	----------------

Tryb	Opis ustawienia	
Wył.	-	
Obciążenie - Tryb	Potrz "8 10.0 Pogulacia Obciażonia"	
regulacji	Faliz 0.10.9 negulacja Obciązenia	
Wykrywanie uziemienia	Patrz "8.10.12 Wykrywanie Uziemienia"	

8.10.4 Parametry Pracy Bez Połączenia z Siecią

Dotknąć opcji "Ustawienia -> Parametry Eksploatacji -> Parametry Pracy Bez Połączenia z Siecią", aby przejść do ekranu przedstawionego na ilustracji.

< Wstecz
Parametry pracy bez połączenia z siec
Tryb pracy bez połączenia z 👘
Zarezerwoweny stan naładowania (SDC) akumulatora dla ptacy bez połączenia z skielą
20

Rys. 8-16 Parametry Pracy Bez Połączenia z Siecią

Opis znajduje się w rozdziale "8.5.2 Tryb pracy bez połączenia z siecią".

8.10.5 Regulacja Mocy Czynnej

Dotknąć opcji "Ustawienia-> Parametry Regulacji Mocy -> Regulacja Mocy Czynnej", aby przejść do ekranu przedstawionego na ilustracji.

SUNGROW

Regulacja mocy czynnej	
Płynny razruch mocy czynnej po wystąpieniu usterki	
Czas płynnego rozruchu mocy czynnej po wystąpieniu usterki nos =	
Sterowanie gradientem mocy czynnej	
Gradient spadku mocy czynnej 39 %/min	
Gradient zwiększanie mocy czynnej 29 %/min	
Trwałość ustawienia mocy aktywnej	
Ograniczenie mocy czynnej	
Współczynnik ograniczenia mocy czynnej 100.0 %	
Ripple Control	

Rys. 8-17 Regulacja Mocy Czynnej

Karta. 8-9 Opis regulacji mocy czynnej

Parametr	Opis	Wartość domyślna	Zakres
Płynny rozruch mocy czynnej po wystąpieniu usterki	Przełącznik uaktywnienia/ dezaktywacji funkcji łagodnego rozruchu mocy czynnej po wystąpieniu usterki	Tak	Tak/Nie
Czas płynnego rozruchu mocy czynnej po wystąpieniu usterki	Czas łagodnego rozruchu wymagany do zwiększenia mocy czynnej od 0 do wartości znamionowej po wystąpieniu usterki	600 s	1 s ~ 1200 s
Sterowanie gradientem mocy czynnej	Ustawienie decydujące o aktywności sterowania gradientem mocy czynnej	Tak	Tak/Nie
Gradient spadku mocy czynnej	Gradient spadku mocy czynnej falownika na minutę		3%/min ~ 6000%/ min
Gradient zwiększania mocy czynnej	Gradient narastania mocy czynnej falownika na minutę	39%/min	
Trwałość ustawienia mocy biernej	Przełącznik uaktywnienia/ dezaktywacji funkcji trwałości ustawienia mocy czynnej	Nie	Tak/Nie
Ograniczenie mocy czynnej	Przełącznik ograniczenia mocy czynnej	Tak	Tak/Nie

Parametr	Opis	Wartość domyślna	Zakres
Wsp ó łczynnik ograniczenia mocy czynnej	Wsp ó łczynnik ograniczenia mocy czynnej wyrażony wartością procentową względem mocy znamionowej	100,0%	0~110%
Ripple Control	Przełącznik dla Ripple Control	Nie	Tak/Nie

8.10.6 Regulacja Mocy Biernej

Dotknąć opcji "Ustawienia -> Parametry Regulacji Mocy -> Regulacja Mocy Biernej", aby przejść do ekranu przedstawionego na ilustracji.

Regulacja mocy biernej	
Trwałość ustawienia mocy biernej	
Tryb regulacji mocy biernej	

Rys. 8-18 Regulacja Mocy Biernej

Karta. 8-10 Opis regulacji mocy biernej

Parametr	Opis	Wartość domyśl-	Zakres
		na	
Trwałość	Przełącznik uaktywnienia/		
Ustawienia Mocy	dezaktywacji funkcji trwałości	Tak	Tak / Nie
Biernej	ustawienia mocy biernej		
Tryb Rogulacii	Patrz "8 5 3 Trub rogulacii mocu		Off / PF /
Mooy Piorpoi	hiernei"	Off	Qt / Q(P) /
NUCY DIEMIEJ	Diemej		Q(U)

8.10.7 Czas Rozładowania Akumulatora

Dotknąć opcji "Ustawienia -> Parametr Zarządzania Energią-> Czas Rozładowania Akumulatora", aby przejść do ekranu przedstawionego na następującej ilustracji.

Czas rozładowania akumulatora	
Godzina rozpoczęcia rozładowania w dni roboczym 1	L.
00.00	
Godzina zakończenia korzystania z akum w dzień roboczy 1	ulatora
24.00	
Godzina rozpoczęcia rozładowania w dni roboczym 2	ut :
00.00	
Godzina zakończenia korzystania z akum w dzień roboczy 2	ulatora
24.00	
Rozladowywanie w dniu wolnym	
Godzina rozpoczącia rozładowania w dni wolnym 1	u.
00.00	
Godzine zakończenia rozładowania w dni wolnym 1	u
24:00	
Godzina rozpoczęcia rozładowania w dni wolnym 2	UC .
00.00	
Godzina zakończenia rozładowania w dni wolnym 2	u
24.00	

Rys. 8-19 Czas Rozładowania Akumulatora

8.10.8 Godzina Wymuszonego Ładowania Akumulatora

Dotknąć opcji "Ustawienia -> Parametr Zarządzania Energią -> Godzina Wymuszonego Ładowania Akumulatora", aby przejść do ekranu, na którym znajduje się ustawienie "Obciążenie - Tryb Regulacji".

Godzina wymuszonego ładowania akumulatora	ŝ.
Ladowanie wymuszone	
Dzień wstrolici wymuszoriego ładowurus Cotziennie	2
Godzina wytnuszonego startu ładowania 1 00.00	
Godzina wymusizologio końca ładowania 1 00:00	
Godarna wymazzolegia startu ładowania 2 00:05	
Godzina Wymuzzonego końca ładowaniu 2 00:00	
Warhahit Socieliows SDC1 wymiaszonwgo ładowania 8%	
Wartstél docelowa BOC2 wymuszonego tadowania	

Rys. 8-20 Godzina Wymuszonego Ładowania Akumulatora

W przypadku braku mocy z instalacji PV system magazynowania energii jest ładowany mocą importowaną z sieci elektroenergetycznej do momentu osiągnięcia docelowego SOC.

Wskazane jest wyznaczenie tego okresu w porze obowiązywania taryfy ulgowej. Okres 1 ma pierwsze ń stwo przed okresem 2, jeśli te dwa okresy się nakładają. Energia do ładowania pochodzi po pierwsze z nadmiaru energii wytwarzanej w instalacji PV, a po drugie z sieci elektroenergetycznej. falownik będzie pobierać moc do ładowania z sieci w przypadku niedoboru energii PV.
8.10.9 Regulacja Obciążenia

Dotknąć opcji "Ustawienia -> Parametr Zarządzania Energią-> Regulacja Obciążenia", aby przejść do ekranu, na którym znajduje się ustawienie "Obciążenie - Tryb Regulacji". Dostępne opcje ustawienia "Obciążenie - Tryb regulacji" to "Tryb Czasowy", "Przełącz Tryb" i "Tryb Inteligentny".

Rys. 8-21 Regulacja Obciążenia

Tryb Czasowy

W tym trybie system będzie sterował działanie odbiorników w przedziale czasu wyznaczonym ustawieniami "Obciążenie Godzina rozpoczęcia okresu 1" i "Obciążenie Godzina zakoń czenia okresu 1". Weźmy dla przykładu przedział czasu 9:00 – 9:30.

Rys. 8-22 Działanie DO w trybie czasowym

Przełącz Tryb

W tym trybie system będzie sterował działaniem obciążenia zgodnie z ustawieniem. W następującym przykładzie przełącznik jest ustawiony w pozycji Nie.

Rys. 8-23 Działanie DO w trybie przełączania

Tryb Inteligentny

System będzie sterował działaniem obciążenia zgodnie z algorytmem optymalizacji mocy zarządzania energią.

W ustawionym przedziale czasowym funkcja DO będzie uaktywniona, aby odbiorniki były zasilane, gdy nadmiar energii PV przekracza zoptymalizowaną wartość mocy.

Uwaga:

W systemie off-grid tryb inteligentny jest dezaktywowany.

- Gdy falownik jest montowany jako doposażenie istniejącej instalacji PV, g ó rny limit zoptymalizowanej mocy jest sumą mocy znamionowej falownika hybrydowego i mocy znamionowej istniejącego falownika PV.
- Gdy jest aktywny tryb inteligentny, przekaźnik DO pozostanie podłączony przez 20 minut po połączeniu DO.

Weźmy dla przykładu przedział czasu 9:00 - 9:30 i zoptymalizowaną moc 1000 W.

Rys. 8-24 Działanie DO w trybie inteligentnym

8.10.10 Parametry Komunikacji

Dotknąć opcji "Ustawienia -> Parametry Komunikacji", aby przejść do ekranu przedstawionego na ilustracji.

Parametry komunikacji	
Adres urządzenia 4	
DHCP	
Adres IP 1 102	
Adres IP 2 T68	
Adres IP 3 1	
Advent IP 4 100	
Brurrika 1 102	

Rys. 8-25 Parametry Komunikacji

- Zakres adres ó w urządzenia wynosi od 1 do 246.
- Adres IP, brama, maska podsieci, preferowany serwer DNS i zastępczy serwer DNS mogą zostać zmodyfikowane tylko w przypadku wyłączenia funkcji DHCP.
- Informacji o ustawieniach adresu IP, bramy, maski podsieci, preferowanego serwera DNS i zastępczego serwera DNS może udzielić administrator sieci.

8.10.11 Aktualizacja Oprogramowania Sprzętowego

Przygotowanie pakietu aktualizacji oprogramowania sprzętowego

Tap the icon 😳 in the upper right corner of the login screen and select "Pobieranie Oprogramowania Sprzętowego", to enter the "Lista Plików" tab. Select the desired

upgrade package (.zip). Tap the icon —. The downloaded package can be found in the "Pobrano" tab.

Aktualizacja

Tap "Aktualizacja Oprogramowania Sprzętowego" to enter the corresponding screen, as shown in the following figure.

Aktualizacja oprogramowania sprzętowego	
Aby zaktualizować, wybierz pik z listy pombę	
Ważne pliki	
SAPPHIRE-H_03011.01.01.zip	
SAPPHIRE-H_01011.01.06.zip	

Rys. 8-26 Aktualizacja Oprogramowania Sprzętowego

Select the desired upgrade package to upgrade the firmware.

8.10.12 Wykrywanie Uziemienia

Przed ustawieniem parametr ó w wykrywania uziemienia należy skontaktować się z firmą SUNGROW, aby uzyskać zaawansowane ustawienia konta iodpowiednie hasło.

Do konta nie może logować się nieupoważniony personel. W przeciwnym razie firma SUNGROW nie ponosi odpowiedzialności za żadne spowodowane uszkodzenia.

Dotknąć opcji "Więcej -> Ustawienia -> Parametry Eksploatacji -> Wykrywanie Uziemienia", aby przejść do odpowiedniego ekranu.

Wykrywanie uziemienia	
Alarm wykrycia uziemienia	
Próg alarma wykrycia uziemienia	
30.0 V	

Rys. 8-27 Wykrywanie Uziemienia

Jeśli wykrywanie uziemienia jest aktywne, przekaźnik DO będzie automatycznie włączany w celu zewnętrznej sygnalizacji alarmu, gdy wartość przekroczy wartość alarmu wykrywania uziemienia. Brzęczyk wewnątrz falownika będzie wydawać sygnał dźwiękowy.

Niepoprawna rezystancja izolacji instalacji PV (kod usterki 039) będzie wyzwalała przekaźnik DO, aby wywołać zewnętrzną sygnalizację alarmu.

8.10.13 Konfiguracja układu równoległego

Jeśli jest utworzony układ r ó wnoległy zawierający co najmniej dwa falowniky, falownik musi zostać wyznaczony na nadrzędny lub podrzędny.

Dotknąć opcji "Więcej -> Ustawienia -> Parametry regulacji mocy -> Ograniczenie mocy wprowadzanej", aby przejść do odpowiedniego ekranu.

	Wybór równoległego połączenia typu master-slave wielu urządzeń
Multi inverter polączony	Komputer-Host
równolegie Wybór równolegiego połączenia typu master-stave	Slave 1
Wielu urządzeń	Slave 2
t.ączna liczba 🔬 biegłych urządzeń z	Slave 3
	Slave 4

Parametr	Wartość domyślna	Zakres	
Multi falownik połączony	Tok		
r ó wnolegle	Tak	Tak / Nie	
Wyb ó r r ó wnoległego		Komputer-Host / Slave 1 / Slave	
połączenia typu master-	Komputer-Host	$\frac{2}{2} \frac{1}{2} \frac{1}$	
slave wielu urz ą dze ń		27 Slave 37 Slave 4	
Łączna liczba	2	2 5	
r ó wnoległych urz ą dze ń	2	2~5	

8.10.14 Sterowanie mocą przy zmianie częstotliwości

Dotknąć opcji "Więcej -> Ustawienia -> Parametry Eksploatacji -> Pozostałe parametry", aby przejść do odpowiedniego ekranu.

	Sterowanie mocą przy zmianie częstotliwości	000	
	Test zmiany częstotliwości	80	
	Ustaw częstotliwość testową 50,00 Hz		
Devenueto	Wartość	Zakres	
Parametr	domyślna		
Sterowanie mocą przy	Nio	Tak / Nia	
zmianie częstotliwości	Me	Tak / INIE	
Test zmiany częstotliwości	Nie	Tak / Nie	
Ustaw częstotliwość	50 00 Hz	50,00 ~ 55,00 Hz	
testowa	50,00112		

Jeśli falowniky PV są podłączone po stronie AC podczas pracy w trybie rezerwy z akumulatora, falownik hybrydowy musi być w stanie limitować ich moc wyjściową. Ten limit jest niezbędny gdy np. akumulator falownika hybrydowego jest całkowicie naładowany i moc dostępna z instalacji PV przekracza zapotrzebowanie na moc podłączonych odbiornik ó w.

Aby nadmiar energii nie powodował przeładowania akumulatora, falownik hybrydowy automatycznie wykrywa problem i zmienia częstotliwość na wyjściu AC. Ta regulacja częstotliwości jest analizowana przez falownik PV. Gdy tylko częstotliwość mocy w sieci zasilanej w trybie rezerwy z akumulatora wzrośnie powyżej wartości wprowadzonej w parametrze "Ustaw częstotliwość testową", zostaje nałożony stosowny limit mocy wyjściowej falownika PV.

Przed doposażeniem istniejącej instalacji PV w złącze off-grid, musi zostać uaktywniony parametr "Sterowanie mocą przy zmianie częstotliwości". Musi być wymuszone limitowanie mocy podłączonych falowników PV na wyjściu AC przez falownik hybrydowy w przypadku zmian częstotliwości. W falownikze PV musi być ustawiony współczynnik mocy limitu mocy czynnej zależnego od częstotliwości.

Gdy SOC akumulatora jest większe niż 85%, hybrydowy falownik będzie w stanie gotowości przed uruchomieniem podczas przełączania na zasilanie z sieci i nie obsługuje płynnego przełączania.

9 Wycofanie instalacji z eksploatacji

9.1 Wycofywanie falownika z użytku

UWAGA

Ta procedura musi być ściśle przestrzegana. W przeciwnym razie grozi śmiertelne porażenie prądem i nieodwracalne uszkodzenie falownika.

9.1.1 Odłączanie Falownika

W celu przeprowadzenia konserwacji lub innych prac serwisowych należy wyłączyć falownik.

Aby odłączyć falownik od źró deł zasilania AC i DC, należy wykonać opisaną poniżej procedurę. W innym przypadku w urządzeniu będą występować śmiertelne napięcia lub dojdzie do jego uszkodzenia.

- Krok 1 Wyłączyć falownik z poziomu aplikacji iSolarCloud. Szczegółowe informacje zawiera "8.10.1 Parametry Systemu".
- Krok 2 Odłączyć zewnętrzny wyłącznik główny po stronie AC i zabezpieczyć go przed ponownym podłączeniem.
- Krok 3 Ustawić przełącznik DC falownika w pozycji "OFF", a następnie odłączyć wszystkie wejścia szereg ó w moduł ó w fotowoltaicznych.
- Krok 4 Rozłączyć wyłącznik DC między akumulatorem a falownikem.

UWAGA

Przez 1 minutę od rozłączenia nie włączać instalacji ponownie.

- Krok 5 Odczekać około dziesięciu minut, aż kondensatory wewnątrz falownika zostaną całkowicie rozładowane.
- Krok 6 Zmierzyć napięcie na wyjściu AC falownika, upewnić się, że nie jest ono pod napięciem.

Krok 7 (Opcjonalnie) Wymontować blok za pomocą wkrętaka Phillips.

- Krok 8 Wetknąć wkrętak płaski w jeden z dw ó ch otwor ó w i wcisnąć go odpowiednią siłą, aby wyjąć złącze AC.
- Krok 9 Włożyć klucz MC4 do nacięcia i wcisnąć klucz odpowiednią siłą, aby wyjąć złącze DC.

- Krok 10Zmierzyć napięcie w złączu akumulatora multimetrem. Gdy napięcie osiągnie zero, odłączyć kable zasilające.
 - --Koniec
- 9.1.2 Demontaż Falownika

PRZESTROGA

Ryzyko poparze ń i porażenia prądem!

Przez co najmniej 10 minut po odłączeniu falownika od sieci elektroenergetycznej, wejścia instalacji fotowoltaicznej i modułu akumulatora

nie wolno dotykać żadnych wewnętrznych element ó w pod napięciem.

- Krok 1 Aby odłączyć wszystkie przewody falownika, należy wykonać procedurę opisaną wrozdziale "Wykonanie połącze ń elektrycznych", odwracając kolejność krok ó w.
- Krok 2 Aby zdemontować falownik, należy wykonać procedurę opisaną w rozdziale "Montaż mechaniczny", odwracając kolejność krok ó w.
- Krok 3 W razie potrzeby odkręcić wspornik montażowy od ściany.
- Krok 4 Jeśli w przyszłości falownik ma zostać ponownie zamontowany, należy zapoznać się zprocedurą prawidłowego przechowywania podaną w rozdziale "Przechowywanie falownika".

- - Koniec

SUNGROW

9.1.3 Utylizacja falownika

Za utylizację falownika odpowiadają użytkownicy.

UWAGA

Niekt ó re części i urządzenia wchodzące w skład falownika, takie jak kondensatory, mogą powodować zanieczyszczenie środowiska. Nie wolno utylizować produktu razem z odpadami komunalnymi. Należy go zutylizować zgodnie z przepisami dotyczącymi utylizacji odpad ó w elektronicznych obowiązującymi w miejscu montażu.

9.2 Wycofywanie akumulatora z użytku

Po wycofaniu z użytku falownika należy wycofać użytku akumulator znajdujący się w instalacji. Procedura wycofywania z użytku akumulatora litowo-jonowego jest następująca.

- Krok 1 Rozłączyć wyłącznik DC między akumulatorem a falownikem.
- Krok 2 Odłączyć kabel komunikacyjny między akumulatorem a falownikem.
- Krok 3 (Opcjonalnie) Wyłączyć przełącznik na akumulatorze litowo-jonowym LG Chem lub BYD, jeśli jest w niego wyposażony.
- Krok 4 Poczekać około 1 minuty, a następnie zmierzyć napięcie w złączu akumulatora multimetrem.
- Krok 5 Jeśli napięcie w złączu akumulatora wynosi zero, odłączyć kable zasilające od modułu akumulatora.

- - Koniec

SUNGROW nie pokrywa koszt ó w utylizacji akumulatora.

10 Rozwiązywanie problem ó w i konserwacja

10.1 Rozwiązywanie Problem ó w

W przypadku wystąpienia alarmu informacje o nim można przeczytać w aplikacji. Identyfikator alarmu i środki korygujące są następujące:

ldentyfika- tor alarmu	Opis	Środki korygujące
002 003	Zbyt wysokie napięcie sieci	Zasadniczo falownik zostanie automatycznie podłączony z powrotem do sieci po jej naprawieniu. Jeśli alarm często się powtarza:
		1. Zmierzyć napięcie sieci i jeśli przekracza ono określoną wartość, skontaktować się z operatorem lokalnej sieci w celu znalezienia rozwiązania.
014, 015		2. Sprawdzić, w aplikacji, czy parametry ochrony są właściwie ustawione.
		3. Sprawdzić, czy przekr ó j poprzeczny przewodu AC spełnia wymagania.
		4. Jeśli alarm będzie nadal występować, należy skontaktować się z firmą SUNGROW.
004, 005	Zbyt niskie napięcie sieci	Zasadniczo falownik zostanie automatycznie podłączony z powrotem do sieci po jej naprawieniu. Jeśli alarm często się powtarza: 1. Zmierzyćnapięcie sieci i jeśli jest niższe od określonej wartości, skontaktować się z- operatorem lokalnej sieci w celu znalezienia rozwiązania. 2. Sprawdzić, w aplikacji, czy parametry ochrony są właściwie ustawione. 3. Sprawdzić, czy przew ó d sieciowy jest właściwie podłączony. 4. Jeśli alarm będzie nadal występować, należy skontaktować się z firma SUNGBOW

SUNGROW

Identyfika- tor alarmu	Opis	Środki korygujące
008	Zbyt wysoka częstotliwość sieciowa	Zasadniczo falownik zostanie automatycznie podłączony z powrotem do sieci po jej naprawieniu. Jeśli alarm często się powtarza:
009	Zbyt niska częstotliwość sieciowa	 Zmierzyć częstotliwość sieciową i jeśli nie mieści się ona w określonym zakresie, skontaktować się z operatorem lokalnej sieci w celu znalezienia rozwiązania. Sprawdzić, w aplikacji, czy parametry ochrony są właściwie ustawione.
		3. Jeśli alarm będzie nadal występować, należy skontaktować się z firmą SUNGROW.
010	Brak połączenia z siecią	 Zasadniczo falownik zostanie automatycznie podłączony z powrotem do sieci po jej naprawieniu. Jeśli alarm często się powtarza: 1. Sprawdzić niezawodność dostaw energii z sieci. 2. Sprawdzić, czy przew ó d sieciowy jest właściwie podłączony. 3. Sprawdzić, czy przew ó d sieciowy jest prawidłowo podłączony (czy przewody fazowy i neutralny są właściwie podłączone). 4. Sprawdzić, czy przełącznik lub wyłącznik obwodu AC jest odłączony. 5. Jeśli alarm będzie nadal występować, należy skontaktować się z firmą SUNGROW.
012	Zbyt duży prąd upływowy	 Ten alarm może być spowodowany słabym nasłonecznieniem lub wysoką wilgotnością otoczenia. falownik zostanie z powrotem podłączony do sieci, gdy warunki środowiskowe ulegną poprawie. Jeśli warunki środowiskowe są prawidłowe, należy sprawdzić, czy przewody AC i DC są właściwie zaizolowane. Jeśli alarm będzie nadal występować, należy skontaktować się z firmą SUNGROW.

ldentyfika- tor alarmu	Opis	Środki korygujące
013	Anomalia w sieci	Zasadniczo falownik zostanie automatycznie podłączony z powrotem do sieci po jej naprawieniu. Jeśli alarm często się powtarza: 1. Zmierzyćczęstotliwość sieciową i jeśli przekracza ona określoną wartość, skontaktować się z operatorem lokalnej sieci w celu znalezienia rozwiązania.
		2. Jeśli alarm będzie nadal występować, należy skontaktować się z firmą SUNGROW.
017	Niezr ó wnoważ- one napięcie sieci	 Zasadniczo falownik zostanie automatycznie podłączony z powrotem do sieci po jej naprawieniu. Jeśli alarm często się powtarza: 1. Zmierzyć napięcie sieci. Jeśli napięcie sieci znacząco się r ó żni, skontaktować się z operatorem sieci elektroenergetycznej w celu ustalenia rozwiązania. 2. Jeśli r ó żnica napięć między trzema fazami jest w zakresie dopuszczanym przez lokalnego operatora sieci elektroenergetycznej, zmienić parametr ustawienie poprzez aplikację. 3. Jeśli alarm będzie nadal występować, należy skontaktować się z firmą SUNGROW.
028, 029	Błąd odwrotnego podłączenia PV	 Sprawdzić, czy odpowiedni ła ń cuch ma odwr ó coną biegunowość. Jeśli tak, odłączyć przełącznik DC i przy niskim promieniowaniu słonecznym, gdy prąd w szeregu spadnie poniżej 0,5A, przełączyć polaryzację. Sprawdzić, czy ła ń cuchy PV podłączone do tego samego regulatora MPPT liczą po tyle samo moduł ó w PV. Jeśli nie, podjąć działania korygujące. Jeśli usterka będzie nadal występować, należy skontaktować się z firmą SUNGROW.

ldentyfika- tor alarmu	Opis	Środki korygujące
		1. Sprawdzić, czy falownik jest wystawiony na bezpośrednie światło słoneczne. Jeśli tak, zastosować środki, kt ó re zapewnią mu cie ń .
	Wysoka	2. Sprawdzić i wyczyścić kanały powietrzne.
037	temperatura otoczenia	3. Sprawdzić, czy alarm 070 (niesprawność wentylatora) wyświetla się w aplikacji. Jeśli tak, wymienić wentylator.
		4. Jeśli alarm będzie nadal występować, należy skontaktować się z firmą SUNGROW.
		Poczekać, aż falownik odzyska sprawność. Jeśli
		usterka będzie się często powtarzać:
039	Niska rezystancja ISO	 Sprawdzić, czy wartość ochronna oporności izolacji jest za wysoka w aplikacji i upewnić się, że iest zgodna z mieiscowymi przepisami.
		 Sprawdzić oporność do ziemi z modułu/kabla PV. Podjąć środki korygujące w razie zwarcia lub uszkodzenia warstwy izolacji.
		3. Jeśli przew ó d jest w dobrym stanie, a alarm występuje w dni deszczowe, sprawdzić, czy przy dobrej pogodzie r ó wnież będzie się ona powtarzać.
		4. Jeśli ta usterka występuje w pochmurny bezdeszczowy dzie ń, ale instalacja jest zasłonięta stojącą wodą lub liśćmi, usunąć wodę i liście. Jeśli usterka nadal występuje, poczekać na poprawę pogody i sprawdzić, czy przestała występować.
		skontaktować się z firmą SUNGROW.
		1. Sprawdzić, czy przew ó d sieciowy jest podłączony prawidłowo.
	Usterka	2. Sprawdzić, czy izolacja między przewodem
106	przewodu	uziemiającym a żyłami kabla jest odpowiednio
	uziemiającego	zaizolowana.
		3. Jeśli alarm będzie nadal występować, należy skontaktować się z firmą SUNGROW.

ldentyfika- tor alarmu	Opis	Środki korygujące
051	Przeciążenie w instalacji off-grid	 Zmniejszyć pob ó r mocy odbiornik ó w podłączonych do złącza off-grid lub odłączyć od niego część odbiornik ó w. Jeśli alarm będzie nadal występować, należy skontaktować się z firmą SUNGROW.
714	Błąd komunikacji z BMS	 Sprawdzić, czy kabel komunikacyjny oraz odpowiedni zacisk przewodu znajdują się w poprawnym stanie. Jeśli tak, podjąć działania korygujące, aby przywr ó cić sprawność połączenia. Ponownie podłączyć kabel komunikacyjny licznika Smart Energy Meter. Jeśli alarm będzie nadal występować, należy skontaktować się z firmą SUNGROW.
932 - 935, 937, 939	Alarm akumulatora	Generalnie, sprawność akumulatora może zostać przywr ó cona automatycznie. W przypadku długotrwałego występowania alarmu: 1. Jeśli alarm jest wywołany temperaturą otoczenia, jak alarmem zbyt wysokiej temperatury lub alarmem niskiej temperatury, spr ó bować zmienić temperaturę otoczenia, np. poprawiając warunki odprowadzania ciepła. 2. Jeśli usterka będzie nadal występować, zwr ó cić się do producenta akumulatora.

ldentyfika- tor alarmu	Opis	Środki korygujące
703, 711, 712, 715, 732 - 736, 739, 832 - 833, 835 - 837	Anomalia akumulatora	 W przypadku anomalii napięcia akumulatora skontrolować stan złącza kabla zasilającego akumulatora (odwrotne połączenie, poluzowanie itp.). W razie jakichkolwiek nieprawidłowości podłączyć poprawnie kabel zasilający akumulatora. Jeśli kabel zasilający akumulatora jest podłączony poprawnie, sprawdzić, czy przebieg napięcia akumulatora w czasie rzeczywistym odbiega od typowego. Jeśli tak, zwr ó cić się do producenta akumulatora. Jeśli nie, skontaktować się z firmą SUNGROW.
		 W przypadku anomalii temperatury akumulatora spr ó bować zmienić temperaturę otoczenia, np. poprawiając warunki odprowadzania ciepła. Jeśli usterka będzie nadal występować, zwr ó cić się do producenta akumulatora.
502-504, 507, 508, 510, 513, 516 - 518	Alarm instalacji	falownik działa prawidłowo. 1. Sprawdzić, czy podłączenie przewodu sieciowego i zacisk ó w nie jest prawidłowe i czy temperatura otoczenia nie jest prawidłowa. Jeśli tak, podjąć działania korygujące. 2. Jeśli alarm będzie nadal występować, należy skontaktować się z firmą SUNGROW.
006,007, 011,019, 021,025, 038,040 - 042,048 - 050,052 - 054,056, 064 - 067, 100 - 102, 105,107, 113,117, 200 - 205, 300, 303 - 305, 308 -	Usterka instalacji	 Poczekać, aż falownik odzyska sprawność. Odłączyć przełączniki lub wyłączniki obwod ó w AC i DC i podłączyć je z powrotem po upływie 15 minut. Jeśli alarm będzie nadal występować, należy skontaktować się z firmą SUNGROW.

ldentyfika-	Onic	Śradki konvaująca
tor alarmu	Opis	STOUKT KOTYGUJĄCE
316, 320,		
600, 601,		
605, 608,		
612, 616,		
620, 624		

10.2 Konserwacja

10.2.1 Konserwacja rutynowa

Pozycja	Spos ó b	Częstotliwość
	 Oględziny pod kątem ewentualnych uszkodze ń lub deformacji falownika. 	
Og ó Iny stan	Sprawdzenie, czy pracy falownika nie towarzyszą nietypowe odgłosy.	Co 6 miesięcy
Systemu	 Kontrola poszczeg ó lnych parametr ó w eksploatacyjnych. 	
	• Sprawdzenie, czy nic nie zasłania radiatora falownika.	
Mukanania	Sprawdzić, czy kable nie są	6 miesięcy po rozruchu, a następnie raz lub dwa razy w roku.
vvykoriarile połaczo ń	uszkodzone, zwłaszcza w miejscach,	
oloktrycznych	kt ó re stykają się z metalową	
elektiycznych	powierzchnią.	

10.2.2 Wymiana baterii guzikowej

Przed wykonaniem jakichkolwiek prac konserwacyjnych odłączyć falownik najpierw od sieci, następnie od ła ń cuch ó w PV i akumulatora.

W falownikze wciąż jest obecne śmiertelne napięcie. Odczekać co najmniej 10 minut, a potem dopiero wykonywać prace konserwacyjne.

W wewnętrznej płytce drukowanej znajduje się bateria guzikowa. W przypadku wystąpienia tego alarmu należy skontaktować się z firmą SUNGROW w sprawie wymiany.

Co kwartał i co rok kontrolować elementy złączne, wygląd, napięcie i rezystancję.

11 Załącznik

11.1 Dane techniczne

Parametry	SH5.0RT	SH6.0RT	
Układ wejściowy PV			
Maks. moc wejściowa PV	7500 W	9000 W	
Maks. napięcie wejściowe PV	1000 V	1000 V	
Napięcie rozruchowe	180 V	250 V	
Znamionowe napięcie	600.V	600.1/	
wejściowe	600 V	600 V	
Zakres napi ęć MPP	150 V950 V	200 V950 V	
Zakres napi ęć MPP dla	210 // 850 //		
mocy znamionowej	210 0030 0	230 0030 0	
Liczba regulator ó w MPPT	2		
Maksymalna liczba	1 /	1	
ła ń cuch ó w PV na MPPT	17	Ι	
Maks. prąd wejściowy PV	25 A (12,5 A/12,5 A)		
Maksymalny pr ą d dla	16	٨	
złącza wejścia	16 A		
Prąd zwarciowy na wejściu	32 A (16)	A / 16 A)	
PV	52 A (10 A / 10 A)		
Dane akumulatora			
Typ akumulatora	Akumulator litowo-jonowy		
Napięcie akumulatora	150 V600 V		
Maks. prąd ładowania/	20 4 / 20 4		
rozładowywania*	30 A 7 30 A		
Maks. moc ładowania/	7500 \\/ / 6000 \\/		
rozładowywania	7500 W 7 8000 W	9000 007 7200 00	
Dane wejścia i wyjścia AC			
Znamionowa moc	5000 \//	6000 W/	
wyjściowa AC	5000 W		
Znamionowy prąd	73Δ	87Δ	
wyjściowy AC	1,0 A	0,1 A	
Maks. moc wejściowa z	12500 W/	15000 W	
sieci elektroenergetycznej	12000 44		

Parametry	SH5.0RT	SH6.0RT	
Maks. moc pozorna na wyjściu AC	5000 VA	6000 VA	
Maks. prąd wyjściowy AC	7,6 A	9,1 A	
Znamionowe napięcie AC	3 / N / PE, 220 / 380 V;	230 / 400 V; 240 / 415 V	
Zakres napięć AC	270 V AC	480 V AC	
Znamionowa częstotliwość sieciowa	50 Hz / 60 Hz		
Zakres częstotliwości sieciowych	45 – 55 Hz	/ 55 – 65 Hz	
Całkowite zniekształcenie harmoniczne (THD)	<3% (mocy :	znamionowej)	
Składowa DC prądu	<0,5	% wej.	
Wsp ó łczynnik mocy	>0,99 / 0,8 indukcyjny	v – 0,8 pojemnościowy	
Ochrona			
LVRT	Т	ak	
Zabezpieczenie	т	ak	
antywyspowe	Так		
Ochrona przeciwzwarciowa AC	Tak		
Ochrona przed prądem	т	-1.	
upływowym	Ian		
Przełącznik DC (instalacja solarna)	Tak		
Bezpiecznik DC (akumulator)	Tak		
Kategoria przepięciowa	III [zasilanie sieciowe	e], II [PV] [akumulator]	
SPD	DC typu I	DC typu II/AC typu II	
Zabezpieczenie przed			
odwrotną polaryzacją	Т	ak	
wejścia akumulatora			
Praca r ó wnoległa na porcie			
sieciowym / Maks. Liczba	Tryb Master-Slave / 5		
inwerter ó w **	-		
Dane instalacji			
Maks. sprawność	98,0 %	98,2 %	
Maks. sprawność (Europa)	97,2 %	97,5 %	
Metoda izolacji (instalacja solarna / akumulator)	Beztransformatorowa / beztransformatorowa		

Parametry	SH5.0RT	SH6.0RT	
Stopie ń ochrony przed		12.02	
wnikaniem (IP)	IP65		
Zakres roboczych			
temperatur otoczenia	-25 C	.60 C	
Dopuszczalny zakres			
wilgotności względnej (bez	010	00%	
kondensacji)			
Metoda chłodzenia	Konwekcja	naturalna	
Maks. wysoko ść robocza n.	4000 m (obniżenie paran	netr ó w znamionowych	
p.m.	>3000) m)	
Hałas (w typowej sytuacji)	30 dE	3(A)	
Wyświetlacz	LE	D	
Komunikacja	RS-485, WLAN, Etherne	t, CAN, 4 × DI, 1 × DO	
Typ przyłącza DC	MC4 (PV) / Sunc	lix (akumulator)	
Typ przyłącza AC	Złącze "plug	and play "	
Dane mechaniczne			
Wymiary (szer. × wys. ×	100 mm v E 10 mm v 170 mm		
gł.)	400 11111 X 540 1	400 mm x 540 mm x 170 mm	
Metoda montażu	Wspornik do mor	Wspornik do montażu ściennego	
Masa	27	¢	
Dane zasilania rezerwoweę	JO		
Znamionowe napięcie	3 / N / PE, 220 V AC / 230 V AC / 240 V AC		
Zakres częstotliwości	50 Hz/60 Hz		
Wsp ó łczynnik zawarto ś ci			
harmonicznych napięcia	2%	0	
wyjściowego			
Czas załączania trybu	< 20	ms	
awaryjnego			
Znamionowa moc	5000 W / 5000 VA	6000 W / 6000 VA	
wyjściowa			
		7200 W / 7200 VA, 5	
Szczytowa moc wyjściowa	6000 W / 6000 VA, 5 min	min	
***	10000 W / 10000 VA, 10 s	10000 W / 10000 VA, 10	
7		S	
∠namionowy prąd	/y prąd		
wyjsciuwy ula obciązenia	3 x 18.5 A		
nracy sieciowei			
pracy sieciowej			

* Zależnie od podłączonego akumulatora

** Niemcy są dostępne dla maksymalnie 2 falownik ó w pracujących r ó wnolegle, jeśli w systemie nie jest stosowana kontrola tętnie ń .

*** Może być osiągnięty tylko wtedy, gdy moc PV i akumulatora jest wystarczająca.

Parametry	SH8.0RT	SH10RT	
Układ wejściowy PV			
Maks. moc wejściowa PV	12000 W	15000 W	
Maks. napięcie wejściowe	100	0.1/	
PV	100	0 V	
Napięcie rozruchowe	250	V	
Znamionowe napięcie	600		
wejściowe	000) V	
Zakres napi ęć MPP	200 V	.950 V	
Zakres napięć MPP dla	2201/ 0501/		
mocy znamionowej	330 V850 V	280 V850 V	
Liczba regulator ó w MPPT	2		
Maksymalna liczba	1 / 1	1/2	
ła ń cuch ó w PV na MPPT	171	172	
Maks. prąd wejściowy PV	25 A (12,5 A/12,5 A)	37,5 A (12,5 A/25 A)	
Maksymalny pr ą d dla	16	٨	
złącza wejścia	Ι ό Α		
Prąd zwarciowy na wejściu	32 A (16 A/16 A)	48 A (16 A/32 A)	
PV	0277(10701077)	10/10/10/102/10	
Dane akumulatora			
Typ akumulatora	Akumulator lit	iowo-jonowy	
Napięcie akumulatora	150 V600 V		
Maks. prąd ładowania/	20 A / 20 A		
rozładowywania*	50 A 7	30 A	
Maks. moc ładowania/	10000 \\\ / 10000 \\		
rozładowywania	10000 447	10000 W	
Dane wejścia i wyjścia AC			
Znamionowa moc	8000 \//	10000 \\/	
wyjściowa AC	8000 W	10000 W	
Znamionowy prąd	11 G A	1450	
wyjściowy AC	11,0 A	14,5 A	
Maks. moc wejściowa z	18600 W/	20600 W	
sieci elektroenergetycznej	10000 44	20000 11	
Maks. moc pozorna na	8000 \/A	10000 \/A	
wyjściu AC	0000 VA	TUUUU VA	

Parametry	SH8.0RT	SH10RT
Maks. prąd wyjściowy AC	12,1 A	15,2 A
Znamionowe napięcie AC	3 / N / PE, 220 / 380 V; 2	30 / 400 V; 240 / 415 V
Zakres napięć AC	270 V AC	480 V AC
Znamionowa częstotliwość		<u> </u>
sieciowa	50 HZ /	60 HZ
Zakres częstotliwości	15 - 55 Hz /	55 - 65 H 7
sieciowych	43 331127	55 65112
Całkowite zniekształcenie	<3% (mocy zr	namionowei)
harmoniczne (THD)	3070 (MOCY ZI	larnionowej)
Składowa DC prądu	<0,5%	o wej.
Wsp ó łczynnik mocy	>0,99 / 0,8 indukcyjny	– 0,8 pojemnościowy
Ochrona		
LVRT	Ta	k
Zabezpieczenie	Tal	k
antywyspowe		
Ochrona przeciwzwarciowa	Tal	k
AC		
Ochrona przed prądem	Tal	k
upływowym		
Przełącznik DC (instalacja	Tal	k
solarna)		
Bezpiecznik DC	Tal	k
(akumulator)		
Kategoria przepięciowa	III [zasilanie sieciowe]	, II [PV] [akumulator]
SPD	DC typu II//	AC typu II
Zabezpieczenie przed		
odwrotną polaryzacją	Ta	k
wejścia akumulatora		
Praca r ó wnoległa na porcie		
sieciowym / Maks. Liczba	Tryb Master-Slave / 5	
inwerter ó w **		
Dane instalacji		
Maks. sprawność	98,4 %	98,4 %
Maks. sprawność (Europa)	97,9 %	97,9 %
Metoda izolacji (instalacja	Beztransformatorowa /	beztransformatorowa
solarna / akumulator)	/ / / / / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ /	
Stopie ń ochrony przed	IPA	5
wnikaniem (IP)	1700	

Parametry	SH8.0RT	SH10RT
Zakres roboczych	-25°C 60°C	
temperatur otoczenia	20 00	
Dopuszczalny zakres		
wilgotności względnej (bez	0100)%
kondensacji)		
Metoda chłodzenia	Konwekcja r	aturalna
Maks. wysokość robocza n.	4000 m (obniżenie param	etr ó w znamionowych
p.m.	>3000	m)
Hałas (w typowej sytuacji)	30 dB((A)
Wyświetlacz	LED	
Komunikacja	RS-485, WLAN, Ethernet,	CAN, 4 × DI, 1 × DO
Typ przyłącza DC	MC4 (PV) / Suncli	k (akumulator)
Typ przyłącza AC	Złącze "plug a	ind play "
Dane mechaniczne		
Wymiary (szer. × wys. ×	460 mm x 540 mm x 170 mm	
gł.)		
Metoda montażu	Wspornik do montażu ściennego	
Masa 27 kg		g
Dane zasilania rezerwowego		
Znamionowe napięcie	3 / N / PE, 220 V AC / 230 V AC / 240 V AC	
Zakres częstotliwości 50 Hz/60 Hz		0 Hz
Wsp ó łczynnik zawartości		
harmonicznych napięcia	2%	
wyjściowego		
Czas załączania trybu		
awaryjnego	< 20 H	115
Znamionowa moc	0000 \\/ / 0000 \/A	10000 \\/ 10000 \/A
wyjściowa	8000 W / 8000 VA	10000 W / 10000 VA
Szczytowa moc wyjściowa	12000 W/ / 1200	0 VA 5 min
***	12000 W / 12000 VA, 5 MIN	
Znamionowy prąd		
wyjściowy dla obciążenia	3 x 18.5 A	
rezerwowego w trybie		
pracy sieciowej		

* Zależnie od podłączonego akumulatora

** Niemcy są dostępne dla maksymalnie 2 falownik ó w pracujących r ó wnolegle, jeśli w systemie nie jest stosowana kontrola tętnie ń .

*** Może być osiągnięty tylko wtedy, gdy moc PV i akumulatora jest wystarczająca.

11.2 Kompatybilność rezerwy w instalacji off-grid

Poniższe informacje dotyczą kompatybilności falownika SUNGROW SH5.0RT / SH6.0RT / SH8.0RT / SH10RT jako rezerwy w instalacji off-grid. Z informacjami tymi należy się zapoznać przed użyciem dowolnego z tych czterech modeli falownika jako rezerwy w instalacji off-grid.

Typ	Moc urządze ń odbiorczych			
190	SH5.0RT	SH6.0RT	SH8.0RT	SH10RT
Wyciąg	1 kW	1 kW	1 kW	1,3 kW
Podgrzewacz wody				
/ czajnik / żelazko /				
piekarnik / toster /	1,5 kW	1,8 kW	2,4 kW	
koc elektryczny /				28K090)
ryżowar				
Kuchenka	1 4/1/	1 1/\//	1 3 k\M	1 5 k\N/
mikrofalowa	IKVV		1,0	1,0 1.00
Lod ó wka	1 kW	1 kW	1 kW	1 kW
Telewizor /	1 6/1/	1 1/1/	1 1/1/	1 1/10/
komputer	IKVV			
Grzejnik łazienkowy	1 kW	1,5 kW	2 kW	2,5 kW
Lampy				
fluorescencyjne /	1 kW	1 kW	1 kW	1,3 kW
LED				
Wentylator				
elektryczny /	1 kW	1,2 kW	1,6 kW	2 kW
sufitowy				

Rozdzielnica elektryczna

Inne duże urządzenia gospodarstwa domowego

Тур	SH5.0RT	SH6.0RT	SH8.0RT	SH10RT
Klimatyzator (z				
regulacja	1 P	1 P	1 P	1,5 P
częstotliwościową)				

Dane dotyczące kompatybilności SH5.0RT / SH6.0RT / SH8.0RT / SH10RT jako rezerwy są oparte na testach z akumulatorami SUNGROW SBR096/128/ 160/192/224/256 (-20 ~ 53°C, 5~100% SOC). W rzeczywistych zastosowaniach należy kierować się maksymalną mocą używanego akumulatora.

A

W przypadku odbiornik ó w niewyszczeg ó lnionych w niniejszym dokumencie należy skontaktować się z SUNGROW w celu potwierdzenia kompatybilności konkretnych odbiornik ó w w instalacji off-grid. SUNGROW nie ponosi odpowiedzialności za szkody spowodowane podłączeniem odbiornika bez potwierdzenia kompatybilności. Dokument ten będzie aktualizowany. W razie ewentualnych problem ó w należy zwr ó cić się do SUNGROW.

11.3 Zapewnianie Jakości

W przypadku wystąpienia usterki produktu w okresie gwarancji firma SUNGROW zapewni darmowy serwis lub darmową wymianę produktu na nowy.

Dow ó d

W okresie gwarancji klient musi dysponować opatrzoną datą fakturą za zakup produktu do okazania. Ponadto znak towarowy umieszczony na produkcie musi być nieuszkodzony i czytelny. W przeciwnym razie firma SUNGROW ma prawo odmowy uznania gwarancji jakości.

Warunki

- Po dokonaniu wymiany wadliwe produkty zostaną przetworzone przez firmę SUNGROW.
- Klient da firmie SUNGROW rozsądny czas na naprawę wadliwego urządzenia.

Wyłączenie odpowiedzialności

Firma SUNGROW ma prawo odmowy uznania gwarancji jakości w następujących przypadkach:

- Gdy upłynął okres darmowej gwarancji na całe urządzenie/jego podzespoły.
- Gdy urządzenie zostało uszkodzone w trakcie transportu.
- Gdy urządzenie zostało niepoprawnie zamontowane, przebudowane lub użyte.
- Gdy urządzenie jest eksploatowane w środowisku o bardzo niekorzystnych warunkach, niezgodnych z wymogami zawartymi w niniejszej instrukcji.
- Gdy usterka lub uszkodzenie są spowodowane montażem, naprawami, modyfikacją lub demontażem w wykonaniu usługodawcy lub personelu innego niż nasza firma.
- Gdy usterka lub uszkodzenie są wynikiem zastosowania niestandardowych podzespołów lub niestandardowego oprogramowania bądź podzespołów lub oprogramowania niepochodzących od firmy SUNGROW.
- Gdy zakres montażu i użytkowania wykracza poza ograniczenia przewidziane wodpowiednich normach międzynarodowych.
- Gdy uszkodzenie powstało pod wpływem niewłaściwego środowiska naturalnego.

W każdym z powyższych przypadków jeśli klient zwróci się z prośbą oprzeprowadzenie konserwacji wadliwych produktów, firma SUNGROW może według własnego uznania wykonać płatną usługę konserwacji.

11.4 Dane Kontaktowe

W razie jakichkolwiek pyta $\acute{n}\,$ na temat tego produktu zachęcamy do kontaktu z naszą firmą.

W celu udzielenia jak najbardziej trafnej pomocy będziemy potrzebować następujących informacji:

- Typ urządzenia
- Numer seryjny urządzenia
- Kod/nazwa usterki
- Krótki opis problemu

Chiny (HQ)	Australia
Sungrow Power Supply Co., Ltd	Sungrow Australia Group Pty. Ltd.
Hefei	Sydney
+86 551 65327834	+61 2 9922 1522
service@sungrowpower.com	service@sungrowpower.com.au
Brazylia	Francja
Sungrow Do Brasil	Sungrow France
Sao Paulo	Lyon
+55 0800 677 6000	+33420102107
latam.service@sungrowamericas.com	service@sungrow-emea.com
Niemcy, Austria, Szwajcaria	Grecja
Sungrow Deutschland GmbH	Partner serwisowy — Survey Digital
Monachium	+30 2106044212
+49 0800 4327 9289	service@sungrow-emea.com
service@sungrow-emea.com	

Indie	Włochy
Sungrow (India) Private Limited	Sungrow Italy
Gurgaon	Werona
+91 080 41201350	+39 0800 974739 (połączenia krajowe)
service@in.sungrowpower.com	+39 045 4752117 (inne)
	service@sungrow-emea.com
Japonia	Korea Południowa
Sungrow Japan K.K.	Sungrow Power Korea Limited
Tokyo	Seoul
+ 81 3 6262 9917	+82 70 7719 1889
service@jp.sungrowpower.com	service@kr.sungrowpower.com
Malezja	Filipiny
Sungrow SEA	Sungrow Power Supply Co., Ltd
Selangor Darul Ehsan	Mandaluyong City
+60 19 897 3360	+63 9173022769
service@my.sungrowpower.com	service@ph.sungrowpower.com
Tajlandia	Hiszpania
Sungrow Thailand Co., Ltd.	Sungrow Ib é rica S.A.U.
Bangkok	Mutilva
+66 891246053	+34 948 05 22 04
service@th.sungrowpower.com	service@sungrow-emea.com
Rumunia	Turcja
Partner serwisowy — Elerex	Sungrow Deutschland GmbH Turkey
+40 241762250	Istanbul
service@sungrow-emea.com	+90 216 663 61 80
	service@sungrow-emea.com
Wielka Brytania	Stany Zjednoczone, Meksyk
Sungrow Power UK Ltd.	Sungrow USA Corporation
Milton Keynes	Phoenix
+44 (0) 01908 414127	+1 833 747 6937
service@sungrow-emea.com	techsupport@sungrow-na.com

WietnamBelgia, Holandia i LuksemburgSungrow Vietnam(Benelux)HanoiSerwis (tylko Holandia): +31+84 918 402 14008000227012service@vn.sungrowpower.comservice@sungrow-emea.comPolska-+48 221530484-service@sungrow-emea.comservice@sungrow-emea.com